First thing is the computational complexity which increases dramatically for every addition of a rotational direction. For example, the Motion estimation time is 'x' seconds. After adding say right hand 90 degrees, we have again 'x' seconds, since it needs to check the same reference frame search window again with the rotated block. Again after adding the left rotation 90 degrees, again it adds another x seconds to motion estimate, and so on. And the main issue here is that, in the entire encoder, typically, Motion Estimation is the block which consumes major part of encoding time.
Second issue is the complexity of motion compensation unit. If we have rotational block in estimation or prediction then we must generate the same transformation for generating the compensated frame, in the encoder and decoder too. The worst thing is that it adds much complexity in the decoder side also.
The third thing is the prediction unit for the support of variable block size. The standard always defines motion vectors for the block sizes which are fixed. If rotational block sizes are proposed, then the directions needs to be standardized in decoder also, where motion compensation unit, entropy encoder/decoder etc.
The fourth thing is the Motion Vector Coding. Since we add the rotational motion vectors, we need to add extra bits to motion vectors.So, put these things in a beam balance - "adding addition bits for each MV" and "improving compression efficiency using rotational Motion vectors", which one weighs more. If the balance is balanced, or if "adding extra bits for each MV" weighs more, then there is no use of using rotational MVs.
Fifth thing is about the deep understanding of the encoder block diagram. The encoder which we are using is analogous to adaptive Differential Pulse Code Modulator or any similar type with predictive coding. The video signal is always encoder differentially. When a video signal or any signal is coded differentially, the time difference between previous and the current sample is infinitesimally small (here 1/frame-rate), such that the individual blocks always follow translational direction.So, we get in use, the rotational MVs only if we are using multiple reference frame when reference frame if larger than frame-rate or at least larger than GOP-size. So, in this case rotational MVs could give very slight improvement in PSNR or increase Motion Estimation time dramatically.
Another thing is about the subjective and statistical study of the Motion direction.
Despite all these, there are some proposals in JCT-VC for implementing this, but finally not approved in current HEVC standard. May be they will try to figure it out and solve all the issues in future.