18
votes

I have the following information:

  • radiusX (rx)
  • radiusY (ry)
  • x1
  • y1
  • x2
  • y2

The SVG spec allows you to define an arc by specifying its radius, and start and end points. There are other options such as large-arc-flag and sweep-flag which help to define how you want the start-point to reach the end-point. More details here.

I am not mathematically inclined, so understanding all of this is near impossible.

I guess I am looking for a simple equation that results in me knowing the centerX and centerY values given all the arguments accepted by SVG's arc command.

Any help is appreciated.

I've search stackoverflow and none of the answers seem to explain the solution in plain english.

2
see Converting an svg arc to lines the center there is in sx,sy and cx,cySpektre
There is ambiguity whether this is the center of the arc, center of the elipse where rx and ry start and arc in a bounding box (see my codepen Where is the center of the arc?). I'm now to the idea it's center of ellipse and with the provided documentation it's about finding coords for shape at center, exactly as the circle and ellipse cx and cy attributes do.Owain Evans

2 Answers

10
votes

From W3C SVG 1.1 spec: Conversion from endpoint to center parameterization

You can take a look at the detailed explanation.

This is a javascript implementation.

// svg : [A | a] (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+

function  radian( ux, uy, vx, vy ) {
    var  dot = ux * vx + uy * vy;
    var  mod = Math.sqrt( ( ux * ux + uy * uy ) * ( vx * vx + vy * vy ) );
    var  rad = Math.acos( dot / mod );
    if( ux * vy - uy * vx < 0.0 ) {
        rad = -rad;
    }
    return rad;
}
//conversion_from_endpoint_to_center_parameterization
//sample :  svgArcToCenterParam(200,200,50,50,0,1,1,300,200)
// x1 y1 rx ry φ fA fS x2 y2
function svgArcToCenterParam(x1, y1, rx, ry, phi, fA, fS, x2, y2) {
    var cx, cy, startAngle, deltaAngle, endAngle;
    var PIx2 = Math.PI * 2.0;

    if (rx < 0) {
        rx = -rx;
    }
    if (ry < 0) {
        ry = -ry;
    }
    if (rx == 0.0 || ry == 0.0) { // invalid arguments
        throw Error('rx and ry can not be 0');
    }

    var s_phi = Math.sin(phi);
    var c_phi = Math.cos(phi);
    var hd_x = (x1 - x2) / 2.0; // half diff of x
    var hd_y = (y1 - y2) / 2.0; // half diff of y
    var hs_x = (x1 + x2) / 2.0; // half sum of x
    var hs_y = (y1 + y2) / 2.0; // half sum of y

    // F6.5.1
    var x1_ = c_phi * hd_x + s_phi * hd_y;
    var y1_ = c_phi * hd_y - s_phi * hd_x;

    // F.6.6 Correction of out-of-range radii
    //   Step 3: Ensure radii are large enough
    var lambda = (x1_ * x1_) / (rx * rx) + (y1_ * y1_) / (ry * ry);
    if (lambda > 1) {
        rx = rx * Math.sqrt(lambda);
        ry = ry * Math.sqrt(lambda);
    }

    var rxry = rx * ry;
    var rxy1_ = rx * y1_;
    var ryx1_ = ry * x1_;
    var sum_of_sq = rxy1_ * rxy1_ + ryx1_ * ryx1_; // sum of square
    if (!sum_of_sq) {
        throw Error('start point can not be same as end point');
    }
    var coe = Math.sqrt(Math.abs((rxry * rxry - sum_of_sq) / sum_of_sq));
    if (fA == fS) { coe = -coe; }

    // F6.5.2
    var cx_ = coe * rxy1_ / ry;
    var cy_ = -coe * ryx1_ / rx;

    // F6.5.3
    cx = c_phi * cx_ - s_phi * cy_ + hs_x;
    cy = s_phi * cx_ + c_phi * cy_ + hs_y;

    var xcr1 = (x1_ - cx_) / rx;
    var xcr2 = (x1_ + cx_) / rx;
    var ycr1 = (y1_ - cy_) / ry;
    var ycr2 = (y1_ + cy_) / ry;

    // F6.5.5
    startAngle = radian(1.0, 0.0, xcr1, ycr1);

    // F6.5.6
    deltaAngle = radian(xcr1, ycr1, -xcr2, -ycr2);
    while (deltaAngle > PIx2) { deltaAngle -= PIx2; }
    while (deltaAngle < 0.0) { deltaAngle += PIx2; }
    if (fS == false || fS == 0) { deltaAngle -= PIx2; }
    endAngle = startAngle + deltaAngle;
    while (endAngle > PIx2) { endAngle -= PIx2; }
    while (endAngle < 0.0) { endAngle += PIx2; }

    var outputObj = { /* cx, cy, startAngle, deltaAngle */
        cx: cx,
        cy: cy,
        startAngle: startAngle,
        deltaAngle: deltaAngle,
        endAngle: endAngle,
        clockwise: (fS == true || fS == 1)
    }

    return outputObj;
}

Usage example:

svg

<path d="M 0 100 A 60 60 0 0 0 100 0"/>

js

var result = svgArcToCenterParam(0, 100, 60, 60, 0, 0, 0, 100, 0);
console.log(result);
/* will output:
{
    cx: 49.99999938964844,
    cy: 49.99999938964844,
    startAngle: 2.356194477985314,
    deltaAngle: -3.141592627780225,
    endAngle: 5.497787157384675,
    clockwise: false
}
*/
2
votes

I'm considering the case of x-axis-rotation = 0. Equations for start and end points:

x1 = cx + rx * cos(StartAngle)

y1 = cy + ry * sin(StartAngle)

x2 = cx + rx * cos(EndAngle)

y2 = cy + ry * sin(EndAngle)

Excluding angles from equation pairs gives us:

ry^2*(x1-cx)^2+rx^2*(y1-cy)^2=rx^2*ry^2

ry^2*(x2-cx)^2+rx^2*(y2-cy)^2=rx^2*ry^2

This equation system can be analytically solved for (cx, cy) by hands or with help of math packets (Maple, Mathematica etc). There are two solutions of quadratic equation (due to large-arc-flag and sweep-flag combination).