I am looking for an algorithm or alogirthms I can emply to take a non-intersecting, concave polygon and find a minimum set of edge aligned rectangles partitioning the polygon. The rectangles can overlap (preferably minimally).
I was considering using ear-clipping to find the minimum triangles. I could build rectangles from those triangles. I guess each triangle could have a set of rectangles. Then I examine the rectangles and merge with other, collinear-ish rectangles. I don't know if that is a good approach or not.
I imagine the problem sounds a bit subjective, but I still think there is a good approach for solving this problem with known algorithms and a bit of heuristics.
*EDIT: More with heuristics, I can expect axis-aligned rectangles to be, incidentally, a common occurence.
**EDIT: I can also expect zero of the convex angles to be less than 90 degrees.