Yes, the authenticity of public keys is a key component of applied cryptography. I can issue a public key that says "I am the website of your bank, trust me", but you shouldn't really trust it. Different schemes have been developed to establish authentication of public keys. One approach is the web of trust model in PGP and GnuPG, others are PKI and Kerberos. One of the main difference between these approaches is where you place your trust. I provide a simplified description only, you have to read about them to learn about the exact details (you wouldn't base your security on an extremely short summary, would you?).
In the web of trust there are some people who you trust, and you (ideally) verified their public keys personally. You can trust other public keys if they have been signed by several people bearing your initial trust. Using these trusted individuals you can check more and more keys.
In PKI (Personal Key Infrastructure) you trust several Certificate Authorities (CAs) and accept their public keys. You trust them that they thoroughly check the identity of key holders before signing their public keys. The combination of public key + signature from a CA (and some other data) forms a certificate. The PKI is used in SSL/TLS, it is the underlying infrastructure of the secure web. You use it when you read your mail on a web interface, when you do online banking, etc. If a CA is compromised, then every certificate signed by the CA will be come insecure.
In Kerberos is designed for computer networks and the key server is the single point of trust. It provides mutual authentication and a unique symmetric encryption key for clients and servers. The key server checks the identity of clients by a secret shared only between the key server and the client. Kereberos is used, for example, in Windows, AFS, Grid computing.