I am using Naive Bayes classifier for my sentiment analysis on customer support. But unfortunately I don't have huge annotated data sets in the customer support domain. But I have a little amount of annotated data in the same domain(around 100 positive and 100 negative). I have the amazon product review data set as well.
Is there anyway can I implement a weighted naive bayes classifier using mahout, so that I can give more weight to the small set of customer support data and small weight to the amazon product review data. A training on the above weighted data set would drastically improve accuracy I guess. Kindly help me with the same.