Not sure whether I understand your problem, but I'm trying to answer my interpretation of what your saying.
So you have an expression in erf and erfc, like this
expr = Erf[x] + 1/Erfc[x] + Sin[Erf[x]] + Cos[Erfc[x]]
All it takes to replace erf and erfc with F is this:
expr //. {Erfc[x_] -> 2 F[-(x) Sqrt[2]], Erf[x_] -> 1 - Erfc[x]}
(* ==> 1 + Cos[2 F[-Sqrt[2] x]] + 1/(2 F[-Sqrt[2] x]) -
2 F[-Sqrt[2] x] + Sin[1 - 2 F[-Sqrt[2] x]]
*)
which with your definition of F[x] is indeed the same:
1 + Cos[2 F[-Sqrt[2] x]] + 1/(2 F[-Sqrt[2] x]) - 2 F[-Sqrt[2] x] +
Sin[1 - 2 F[-Sqrt[2] x]] /. F[x_] -> CDF[NormalDistribution[0, 1]][x]
(* ==> 1 + Cos[Erfc[x]] + 1/Erfc[x] - Erfc[x] + Sin[1 - Erfc[x]] *)