Many of the other answers have focused on the performance (parallelism) side of functional programming, which I believe is very important. However, you did specifically ask about productivity, as in, can you program the same thing faster in a functional paradigm than in an imperative paradigm.
I actually find (from personal experience) that programming in F# matches the way I think better, and so it's easier. I think that's the biggest difference. I've programmed in both F# and C#, and there's a lot less "fighting the language" in F#, which I love. You don't have to think about the details in F#. Here's a few examples of what I've found I really enjoy.
For example, even though F# is statically typed (all types are resolved at compile time), the type inference figures out what types you have, so you don't have to say it. And if it can't figure it out, it automatically makes your function/class/whatever generic. So you never have to write any generic whatever, it's all automatic. I find that means I'm spending more time thinking about the problem and less how to implement it. In fact, whenever I come back to C#, I find I really miss this type inference, you never realise how distracting it is until you don't need to do it anymore.
Also in F#, instead of writing loops, you call functions. It's a subtle change, but significant, because you don't have to think about the loop construct anymore. For example, here's a piece of code which would go through and match something (I can't remember what, it's from a project Euler puzzle):
let matchingFactors =
factors
|> Seq.filter (fun x -> largestPalindrome % x = 0)
|> Seq.map (fun x -> (x, largestPalindrome / x))
I realise that doing a filter then a map (that's a conversion of each element) in C# would be quite simple, but you have to think at a lower level. Particularly, you'd have to write the loop itself, and have your own explicit if statement, and those kinds of things. Since learning F#, I've realised I've found it easier to code in the functional way, where if you want to filter, you write "filter", and if you want to map, you write "map", instead of implementing each of the details.
I also love the |> operator, which I think separates F# from ocaml, and possibly other functional languages. It's the pipe operator, it lets you "pipe" the output of one expression into the input of another expression. It makes the code follow how I think more. Like in the code snippet above, that's saying, "take the factors sequence, filter it, then map it." It's a very high level of thinking, which you don't get in an imperative programming language because you're so busy writing the loop and if statements. It's the one thing I miss the most whenever I go into another language.
So just in general, even though I can program in both C# and F#, I find it easier to use F# because you can think at a higher level. I would argue that because the smaller details are removed from functional programming (in F# at least), that I am more productive.
Edit: I saw in one of the comments that you asked for an example of "state" in a functional programming language. F# can be written imperatively, so here's a direct example of how you can have mutable state in F#:
let mutable x = 5
for i in 1..10 do
x <- x + i