I was looking at the sample code for a lock-free queue at:
http://drdobbs.com/high-performance-computing/210604448?pgno=2
(Also reference in many SO questions such as Is there a production ready lock-free queue or hash implementation in C++)
This looks like it should work for a single producer/consumer, although there are a number of typos in the code. I've updated the code to read as shown below, but it's crashing on me. Anybody have suggestions why?
In particular, should divider and last be declared as something like:
atomic<Node *> divider, last; // shared
I don't have a compiler supporting C++0x on this machine, so perhaps that's all I need...
// Implementation from http://drdobbs.com/high-performance-computing/210604448
// Note that the code in that article (10/26/11) is broken.
// The attempted fixed version is below.
template <typename T>
class LockFreeQueue {
private:
struct Node {
Node( T val ) : value(val), next(0) { }
T value;
Node* next;
};
Node *first, // for producer only
*divider, *last; // shared
public:
LockFreeQueue()
{
first = divider = last = new Node(T()); // add dummy separator
}
~LockFreeQueue()
{
while( first != 0 ) // release the list
{
Node* tmp = first;
first = tmp->next;
delete tmp;
}
}
void Produce( const T& t )
{
last->next = new Node(t); // add the new item
last = last->next; // publish it
while (first != divider) // trim unused nodes
{
Node* tmp = first;
first = first->next;
delete tmp;
}
}
bool Consume( T& result )
{
if (divider != last) // if queue is nonempty
{
result = divider->next->value; // C: copy it back
divider = divider->next; // D: publish that we took it
return true; // and report success
}
return false; // else report empty
}
};
I wrote the following code to test this. Main (not shown) just calls TestQ().
#include "LockFreeQueue.h"
const int numThreads = 1;
std::vector<LockFreeQueue<int> > q(numThreads);
void *Solver(void *whichID)
{
int id = (long)whichID;
printf("Thread %d initialized\n", id);
int result = 0;
do {
if (q[id].Consume(result))
{
int y = 0;
for (int x = 0; x < result; x++)
{ y++; }
y = 0;
}
} while (result != -1);
return 0;
}
void TestQ()
{
std::vector<pthread_t> threads;
for (int x = 0; x < numThreads; x++)
{
pthread_t thread;
pthread_create(&thread, NULL, Solver, (void *)x);
threads.push_back(thread);
}
for (int y = 0; y < 1000000; y++)
{
for (unsigned int x = 0; x < threads.size(); x++)
{
q[x].Produce(y);
}
}
for (unsigned int x = 0; x < threads.size(); x++)
{
q[x].Produce(-1);
}
for (unsigned int x = 0; x < threads.size(); x++)
pthread_join(threads[x], 0);
}
Update: It ends up that the crash is being caused by the queue declaration:
std::vector<LockFreeQueue<int> > q(numThreads);
When I change this to be a simple array, it runs fine. (I implemented a version with locks and it was crashing too.) I see that the destructor is being called immediate after the constructor, resulting in doubly-freed memory. But, does anyone know WHY the destructor would be called immediately with a std::vector?
R
for reading, queueW
for writing and the 'swap buffer`S
that is initially set to null. Usage: after the producer is done writing: exchangeW <-> S
. The consumer reads fromR
as usual, exchangingR <-> S
ifR
is exhausted; trying one more read after the swap. Lastly, if a reader (or writer) encounters a nullptr before reading (or writing) then exchangeR <-> S
(orW <-> S
)... – pauluss86listen()
method that blocks the reader until it's notified by the writer. – pauluss86