I'm trying to do a perspective transformation of a set of points in order to achieve a deskewing effect:
http://nuigroup.com/?ACT=28&fid=27&aid=1892_H6eNAaign4Mrnn30Au8d
I'm using the image below for tests, and the green rectangle display the area of interest.
I was wondering if it's possible to achieve the effect I'm hoping for using a simple combination of cv::getPerspectiveTransform
and cv::warpPerspective
. I'm sharing the source code I've written so far, but it doesn't work. This is the resulting image:
So there is a vector<cv::Point>
that defines the region of interest, but the points are not stored in any particular order inside the vector, and that's something I can't change in the detection procedure. Anyway, later, the points in the vector are used to define a RotatedRect
, which in turn is used to assemble cv::Point2f src_vertices[4];
, one of the variables required by cv::getPerspectiveTransform()
.
My understanding about vertices and how they are organized might be one of the issues. I also think that using a RotatedRect
is not the best idea to store the original points of the ROI, since the coordinates will change a little bit to fit into the rotated rectangle, and that's not very cool.
#include <cv.h>
#include <highgui.h>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char* argv[])
{
cv::Mat src = cv::imread(argv[1], 1);
// After some magical procedure, these are points detect that represent
// the corners of the paper in the picture:
// [408, 69] [72, 2186] [1584, 2426] [1912, 291]
vector<Point> not_a_rect_shape;
not_a_rect_shape.push_back(Point(408, 69));
not_a_rect_shape.push_back(Point(72, 2186));
not_a_rect_shape.push_back(Point(1584, 2426));
not_a_rect_shape.push_back(Point(1912, 291));
// For debugging purposes, draw green lines connecting those points
// and save it on disk
const Point* point = ¬_a_rect_shape[0];
int n = (int)not_a_rect_shape.size();
Mat draw = src.clone();
polylines(draw, &point, &n, 1, true, Scalar(0, 255, 0), 3, CV_AA);
imwrite("draw.jpg", draw);
// Assemble a rotated rectangle out of that info
RotatedRect box = minAreaRect(cv::Mat(not_a_rect_shape));
std::cout << "Rotated box set to (" << box.boundingRect().x << "," << box.boundingRect().y << ") " << box.size.width << "x" << box.size.height << std::endl;
// Does the order of the points matter? I assume they do NOT.
// But if it does, is there an easy way to identify and order
// them as topLeft, topRight, bottomRight, bottomLeft?
cv::Point2f src_vertices[4];
src_vertices[0] = not_a_rect_shape[0];
src_vertices[1] = not_a_rect_shape[1];
src_vertices[2] = not_a_rect_shape[2];
src_vertices[3] = not_a_rect_shape[3];
Point2f dst_vertices[4];
dst_vertices[0] = Point(0, 0);
dst_vertices[1] = Point(0, box.boundingRect().width-1);
dst_vertices[2] = Point(0, box.boundingRect().height-1);
dst_vertices[3] = Point(box.boundingRect().width-1, box.boundingRect().height-1);
Mat warpMatrix = getPerspectiveTransform(src_vertices, dst_vertices);
cv::Mat rotated;
warpPerspective(src, rotated, warpMatrix, rotated.size(), INTER_LINEAR, BORDER_CONSTANT);
imwrite("rotated.jpg", rotated);
return 0;
}
Can someone help me fix this problem?