We had to implement exactly that same behaviour that you describe for an app recently. The screens and overall flow of the application were already defined so we had to stick with it (it's an iOS app clone...). Luckily, we managed to get rid of the on-screen back buttons :)
We hacked the solution using a mixture of TabActivity, FragmentActivities (we were using the support library for fragments) and Fragments. In retrospective, I'm pretty sure it wasn't the best architecture decision, but we managed to get the thing working. If I had to do it again, I'd probably try to do a more activity-based solution (no fragments), or try and have only one Activity for the tabs and let all the rest be views (which I find are much more reusable than activities overall).
So the requirements were to have some tabs and nestable screens in each tab:
tab 1
screen 1 -> screen 2 -> screen 3
tab 2
screen 4
tab 3
screen 5 -> 6
etc...
So say: user starts in tab 1, navigates from screen 1 to screen 2 then to screen 3, he then switches to tab 3 and navigates from screen 4 to 6; if the switched back to tab 1, he should see screen 3 again and if he pressed Back he should return to screen 2; Back again and he is in screen 1; switch to tab 3 and he's in screen 6 again.
The main Activity in the application is MainTabActivity, which extends TabActivity. Each tab is associated with an activity, lets say ActivityInTab1, 2 and 3. And then each screen will be a fragment:
MainTabActivity
ActivityInTab1
Fragment1 -> Fragment2 -> Fragment3
ActivityInTab2
Fragment4
ActivityInTab3
Fragment5 -> Fragment6
Each ActivityInTab holds only one fragment at a time, and knows how to replace one fragment for another one (pretty much the same as an ActvityGroup). The cool thing is that it's quite easy to mantain separate back stacks for each tab this way.
The functionality for each ActivityInTab was quite the same: know how to navigate from one fragment to another and maintain a back stack, so we put that in a base class. Let's call it simply ActivityInTab:
abstract class ActivityInTab extends FragmentActivity { // FragmentActivity is just Activity for the support library.
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_in_tab);
}
/**
* Navigates to a new fragment, which is added in the fragment container
* view.
*
* @param newFragment
*/
protected void navigateTo(Fragment newFragment) {
FragmentManager manager = getSupportFragmentManager();
FragmentTransaction ft = manager.beginTransaction();
ft.replace(R.id.content, newFragment);
// Add this transaction to the back stack, so when the user presses back,
// it rollbacks.
ft.addToBackStack(null);
ft.commit();
}
}
The activity_in_tab.xml is just this:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/content"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:isScrollContainer="true">
</RelativeLayout>
As you can see, the view layout for each tab was the same. That's because it's just a FrameLayout called content that will hold each fragment. The fragments are the ones that have each screen's view.
Just for the bonus points, we also added some little code to show a confirm dialog when the user presses Back and there are no more fragments to go back to:
// In ActivityInTab.java...
@Override
public void onBackPressed() {
FragmentManager manager = getSupportFragmentManager();
if (manager.getBackStackEntryCount() > 0) {
// If there are back-stack entries, leave the FragmentActivity
// implementation take care of them.
super.onBackPressed();
} else {
// Otherwise, ask user if he wants to leave :)
showExitDialog();
}
}
That's pretty much the setup. As you can see, each FragmentActivity (or just simply Activity in Android >3) is taking care of all the back-stacking with it's own FragmentManager.
An activity like ActivityInTab1 will be really simple, it'll just show it's first fragment (i.e. screen):
public class ActivityInTab1 extends ActivityInTab {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
navigateTo(new Fragment1());
}
}
Then, if a fragment needs to navigate to another fragment, it has to do a little nasty casting... but it's not that bad:
// In Fragment1.java for example...
// Need to navigate to Fragment2.
((ActivityIntab) getActivity()).navigateTo(new Fragment2());
So that's pretty much it. I'm pretty sure this is not a very canonical (and mostly sure not very good) solution, so I'd like to ask seasoned Android developers what would be a better approach to acheive this functionality, and if this is not "how it's done" in Android, I'd appreciate if you could point me to some link or material that explains which is the Android way to approach this (tabs, nested screens in tabs, etc). Feel free to tear apart this answer in the comments :)
As a sign that this solution is not very good is that recently I had to add some navigation functionality to the application. Some bizarre button that should take the user from one tab into another and into a nested screen. Doing that programmatically was a pain in the butt, because of who-knows-who problems and dealing with when are fragments and activities actually instantiated and initialized. I think it would have been much easier if those screens and tabs were all just Views really.
Finally, if you need to survive orientation changes, it's important that your fragments are created using setArguments/getArguments. If you set instance variables in your fragments' constructors you'll be screwed. But fortunately that's really easy to fix: just save everything in setArguments in the constructor and then retrieve those things with getArguments in onCreate to use them.