I have an interesting problem that I've been trying to solve for a while. There is no "right" solution to this, as there is no strict criteria for success. What I want to accomplish is a smooth transition between two simple polygons, from polygon A to polygon B. Polygon A is completely contained within polygon B.
My criteria for this transition are:
- The transition is continuous in time and space
- The area that is being "filled" from polygon A into polygon B should be filled in as if there was a liquid in A that was pouring out into the shape of B
- It is important that this animation can be calculated either on the fly, or be defined by a set of parameters that require little space, say less than a few Kb.
Cheating is perfectly fine, any way to solve this so that it looks good is a possible solution.
Solutions I've considered, and mostly ruled out:
- Pairing up vertices in A and B and simply interpolate. Will not look good and does not work in the case of concave polygons.
- Dividing the area B-A into convex polygons, perhaps a Voronoi diagram, and calculate the discrete states of the polygon by doing a BFS on the smaller convex polygons. Then I interpolate between the discrete states. Note: If polygon B-A is convex, the transition is fairly trivial. I didn't go with this solution because dividing B-A into equally sized small convex polygons was surprisingly difficult
- Simulation: Subdivide polygon A. Move each vertex along the polygon line normal (outwards) in discrete but small steps. For each step, check if vertex is still inside B. If not, then move back to previous position. Repeat until A equals B. I don't like this solution because the check to see whether a vertex is inside a polygon is slow.
Does anybody have any different ideas?