In my spark data frame i have a here is schema
root
|-- locations: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- address_line_2: string (nullable = true)
| | |-- continent: string (nullable = true)
| | |-- country: string (nullable = true)
| | |-- geo: string (nullable = true)
| | |-- is_primary: boolean (nullable = true)
| | |-- last_updated: string (nullable = true)
| | |-- locality: string (nullable = true)
| | |-- most_recent: boolean (nullable = true)
| | |-- name: string (nullable = true)
| | |-- postal_code: string (nullable = true)
| | |-- region: string (nullable = true)
| | |-- street_address: string (nullable = true)
| | |-- subregion: string (nullable = true)
| | |-- type: string (nullable = true)
| | |-- zip_plus_4: string (nullable = true)
here is a sample of the location
[Row(locations=[Row(address_line_2=None, continent='north america', country='united states', geo='40.41,-74.36', is_primary=True, last_updated=None, locality='old bridge', most_recent=True, name='old bridge, new jersey, united states', postal_code=None, region='new jersey', street_address=None, subregion=None, type=None, zip_plus_4=None)])]
as you can see there is a field called isPrimary based on that I want to select the field here is function I wrote
def geoLambda(locations):
"""
Pre process geo locations
:param x:
:return: dict
"""
try:
for x in locations:
if x.get("is_primary") == "True" or x.get("is_primary") == True:
data = x
data = data.get("geo", None)
if data is None:
lat,lon = -83, 135
else:
lat,lon = data.split(",")
Payload = {"lat":float(lat), "lon":float(lon)}
return Payload
else:
pass
except Exception as e:
print("EXCEPTION: {} ".format(e))
lat,lon = -83, 135
Payload = {"lat":float(lat), "lon":float(lon)}
return Payload
udfValueToCategoryGeo = udf(geoLambda, StructType())
df = df.withColumn("myloc", udfValueToCategoryGeo("locations"))
output
|-- myloc: struct (nullable = true)
----+
| {}|
| {}|
| {}|
| {}|
| {}|
| {}|
| {}|
If I select the type as string
udfValueToCategoryGeo = udf(geoLambda, StringType())
df = df.withColumn("myloc", udfValueToCategoryGeo("locations"))
| myloc|
+--------------------+
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
|{lon=135.0, lat=-...|
i get all constant not sure why ?
same function works fine in pandas but I don't want to use pandas any help would be great
This is how single row looks like
Location ROW
[{'name': 'princeton, new jersey, united states',
'locality': 'princeton',
'region': 'new jersey',
'subregion': None,
'country': 'united states',
'continent': 'north america',
'type': None,
'geo': '40.34,-74.65',
'postal_code': None,
'zip_plus_4': None,
'street_address': None,
'address_line_2': None,
'most_recent': True,
'is_primary': True,
'last_updated': '2021-03-01'}]
ANY HELP