I am trying to run a multinomial logit with year fixed effects in mlogit
in Stata (panel data: year-country), but I do not get standard errors for some of the models. When I run the same model using multinom
in R I get both coefficients and standard errors.
I do not use Stata frequently, so I may be missing something or I may be running different models in Stata and R and should not be comparing them in the first place. What may be happening?
So a few details about the simple version of the model of interest:
I created a data example to show what the problem is
Dependent variable (will call it DV1) with 3 categories of -1, 0, 1 (unordered and 0 as reference)
Independent variables: 2 continuous variables, 3 binary variables, interaction of 2 of the 3 binary variables
Years: 1995-2003
Number of observations in the model: 900
In R I run the code and get coefficients and standard errors as below.
R version of code creating data and running the model:
## Fabricate example data
library(fabricatr)
data <- fabricate(
N = 900,
id = rep(1:900, 1),
IV1 = draw_binary(0.5, N = N),
IV2 = draw_binary(0.5, N = N),
IV3 = draw_binary(0.5, N = N),
IV4 = draw_normal_icc(mean = 3, N = N, clusters = id, ICC = 0.99),
IV5 = draw_normal_icc(mean = 6, N = N, clusters = id, ICC = 0.99))
library(AlgDesign)
DV = gen.factorial(c(3), 1, center=TRUE, varNames=c("DV"))
year = gen.factorial(c(9), 1, center=TRUE, varNames=c("year"))
DV = do.call("rbind", replicate(300, DV, simplify = FALSE))
year = do.call("rbind", replicate(100, year, simplify = FALSE))
year[year==-4]= 1995
year[year==-3]= 1996
year[year==-2]= 1997
year[year==-1]= 1998
year[year==0]= 1999
year[year==1]= 2000
year[year==2]= 2001
year[year==3]= 2002
year[year==4]= 2003
data1=cbind(data, DV, year)
data1$DV1 = relevel(factor(data1$DV), ref = "0")
## Save data as csv file (to use in Stata)
library(foreign)
write.csv(data1, "datafile.csv", row.names=FALSE)
## Run multinom
library(nnet)
model1 <- multinom(DV1 ~ IV1 + IV2 + IV3 + IV4 + IV5 + IV1*IV2 + as.factor(year), data = data1)
When I run the model using mlogit
(without fixed effects) in Stata I get both coefficients and standard errors.
So I tried including year fixed effects in the model using Stata three different ways and none worked:
femlogit
- factor-variable and time-series operators not allowed
- depvar and indepvars may not contain factor variables or time-series operators
mlogit
- fe option: fe not allowed
- used i.year: omits certain variables and/or does not give me standard errors and only shows coefficients (example in code below)
* Read file
import delimited using "datafile.csv", clear case(preserve)
* Run regression
mlogit DV1 IV1 IV2 IV3 IV4 IV5 IV1##IV2 i.year, base(0) iterate(1000)
xtmlogit
- error - does not run
- error message: total number of permutations is 2,389,461,218; this many permutations require a considerable amount of memory and can result in long run times; use option force to proceed anyway, or consider using option rsample()
mlogit
Stata results do not converge, possibly because there is no relation between $y$ and $X$ in your random data. With your observed data,multinom
andfemlogit
may give different results because they estimate different models (and may have different convergence criteria). As far as I know,femlogit
(and nowxtmlogit
) are the only fixed-effect multinomial logit commands/functions in public Stata, R, and Python packages. I thinkfemlogit
will converge (if convergence is possible) if you follow @Danferno's answer. – Richard Herron