I am trying to train the mnist dataset on ResNet50 using the Keras
library.
The shape of mnist is (28, 28, 1)
however resnet50 required the shape to be (32, 32, 3)
How can I convert the mnist dataset to the required shape?
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)
x_train = x_train/255.0
x_test = x_test/255.0
from keras.utils import to_categorical
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
model = models.Sequential()
# model.add(InputLayer(input_shape=(28, 28)))
# model.add(Reshape(target_shape=(32, 32, 3)))
# model.add(Conv2D())
model.add(conv_base)
model.add(Flatten())
model.add(BatchNormalization())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Dense(10, activation='softmax'))
model.compile(optimizer=optimizers.RMSprop(lr=2e-5), loss='binary_crossentropy', metrics=['acc'])
history = model.fit(x_train, y_train, epochs=5, batch_size=20, validation_data=(x_test, y_test))
ValueError: Input 0 is incompatible with layer sequential_10: expected shape=(None, 32, 32, 3), found shape=(20, 28, 28, 1)