I am working on a dataflow pipeline written in python2.7 using apache_beam==2.24.0 . The work of the pipeline is to consume pubsub messages from a subscription using beam's ReadFromPubSub in batches, do some processing on the messages and then to persist the resultant data to two different bigquery tables. There is a lot of data that I am consuming. Google-cloud-pubsub version is 1.7.0 . After running the pipeline everything works fine but after a few hours I start getting the exception:
org.apache.beam.vendor.grpc.v1p13p1.io.grpc.StatusRuntimeException: CANCELLED: call already cancelled
On gcp dataflow console, the logs show this error but the job in itself seems to work fine. It consumes data from the subscription and writes it to bigquery. What CANCELLED: call is being referred to here and why am I getting this error? How can I resolve this?
Full stacktrace:
Caused by: org.apache.beam.vendor.grpc.v1p26p0.io.grpc.StatusRuntimeException: CANCELLED: call already cancelled
org.apache.beam.vendor.grpc.v1p26p0.io.grpc.Status.asRuntimeException(Status.java:524)
org.apache.beam.vendor.grpc.v1p26p0.io.grpc.stub.ServerCalls$ServerCallStreamObserverImpl.onNext(ServerCalls.java:341)
org.apache.beam.sdk.fn.stream.DirectStreamObserver.onNext(DirectStreamObserver.java:98)
org.apache.beam.sdk.fn.data.BeamFnDataSizeBasedBufferingOutboundObserver.flush(BeamFnDataSizeBasedBufferingOutboundObserver.java:100)
org.apache.beam.runners.dataflow.worker.fn.data.RemoteGrpcPortWriteOperation.shouldWait(RemoteGrpcPortWriteOperation.java:124)
org.apache.beam.runners.dataflow.worker.fn.data.RemoteGrpcPortWriteOperation.maybeWait(RemoteGrpcPortWriteOperation.java:167)
org.apache.beam.runners.dataflow.worker.fn.data.RemoteGrpcPortWriteOperation.process(RemoteGrpcPortWriteOperation.java:196)
org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process(OutputReceiver.java:49)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn$1.output(GroupAlsoByWindowsParDoFn.java:182)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner$1.outputWindowedValue(GroupAlsoByWindowFnRunner.java:108)
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowReshuffleFn.processElement(StreamingGroupAlsoByWindowReshuffleFn.java:57)
org.apache.beam.runners.dataflow.worker.StreamingGroupAlsoByWindowReshuffleFn.processElement(StreamingGroupAlsoByWindowReshuffleFn.java:39)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.invokeProcessElement(GroupAlsoByWindowFnRunner.java:121)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.processElement(GroupAlsoByWindowFnRunner.java:73)
org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn.processElement(GroupAlsoByWindowsParDoFn.java:134)
org.apache.beam.runners.dataflow.worker.util.common.worker.ParDoOperation.process(ParDoOperation.java:44)
org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process(OutputReceiver.java:49)
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop(ReadOperation.java:201)
org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.start(ReadOperation.java:159)
org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:77)
org.apache.beam.runners.dataflow.worker.fn.control.BeamFnMapTaskExecutor.execute(BeamFnMapTaskExecutor.java:123)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1365)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1100(StreamingDataflowWorker.java:154)
org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$7.run(StreamingDataflowWorker.java:1085)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
java.lang.Thread.run(Thread.java:748)