I have a satellite image file. Loaded into dask array. I want to get pixel value (nearest) of a latitude, longitude of interest.
Satellite image is in GEOS projection. I have longitude and latitude information as 2D numpy arrays.
I have loaded it into a dask data array
from satpy import Scene
import matplotlib as plt
import os
cwd = os.getcwd()
fn = os.path.join(cwd, 'EUMETSAT_data/1Jan21/MSG1-SEVI-MSG15-0100-NA-20210101185741.815000000Z-20210101185757-1479430.nat')
files = [fn]
scn = Scene(filenames=files, reader='seviri_l1b_native')
scn.load(["VIS006"])
da = scn['VIS006']
This is what the dask array looks like:
I read lon lats from the area attribute with the help of satpy:
lon, lat = scn['VIS006'].attrs['area'].get_lonlats()
print(lon.shape)
print(lat.shape)
(1179, 808)
(1179, 808)
I get a 2d numpy array each, for longitude and latitude that are coordinates but I can not use them for slicing or selecting.
What is the best practice/method to get nearest lat long, pixel information? How do I project the data onto lat long coordinates that I can then use for indexing to arrive at the pixel value.
At the end, I want to get pixel value (nearest) of lat long of interest.
Thanks in advance!!!