I have speech data in utterance
and gaze data in columns A_aoi
, B_aoi
, and C_aoi
. Some of the utterance
rows are duplicated
:
df <- data.frame(
line = c(1,2,3,4,4,4,5,6,6,7,8),
speaker = c("b", "a", NA, "c", "c", "c", NA, "c", "c", "a", "a"),
utterance = c("Hey sweetheart!", "Louise!", "(0.234)", "What?", "What?", "What?", "(0.778)", "um::", "um::", "Wake up,", "breakfast's ready"),
A_aoi = c("B", "B", "C", "B", NA, "C", "C", NA, "C", "C", "C"),
B_aoi = c("C", "C", "C", "C", "A", "C", NA, NA, "C", "C", NA),
C_aoi = c("A", NA, NA, "B", NA, "C", "C", "A", "A", "A", "A")
)
What I need to do is collapse the rows by rleid
groups. However, where utterance
is duplicated
, there should be no collapse.
I'm fine with collapsing the rows by rleid
groups:
library(dplyr)
library(data.table)
library(stringr)
df %>%
group_by(grp = rleid(speaker)) %>%
summarise(across(c(line, speaker), first),
utterance = str_c(utterance, collapse = ' '),
A_aoi = str_c(if_else(!is.na(A_aoi), A_aoi, "*" ), collapse = ""),
B_aoi = str_c(if_else(!is.na(B_aoi), B_aoi, "*" ), collapse = ""),
C_aoi = str_c(if_else(!is.na(C_aoi), C_aoi, "*" ), collapse = ""), .groups = 'drop') %>%
select(- grp)
This however also collapses the duplicated
utterance
values. The expected result is this:
# A tibble: 7 x 6
line speaker utterance A_aoi B_aoi C_aoi
<dbl> <chr> <chr> <chr> <chr> <chr>
1 1 b Hey sweetheart! B C A
2 2 a Louise! B C *
3 3 NA (0.234) C C *
4 4 c What? B*C CAC B*C
5 5 NA (0.778) C * C
6 6 c um:: *C *C AA
7 7 a Wake up, breakfast's ready CC C* AA
Any help is appreciated!
EDIT:
I have a stepwise solution but if anybody has a better, less convoluted one I'll be most grateful:
# step 1 -- collapse only `aoi` columns:
df_a <- df %>%
group_by(grp = rleid(speaker)) %>%
summarise(across(c(line, speaker), first),
A_aoi = str_c(if_else(!is.na(A_aoi), A_aoi, "*" ), collapse = ""),
B_aoi = str_c(if_else(!is.na(B_aoi), B_aoi, "*" ), collapse = ""),
C_aoi = str_c(if_else(!is.na(C_aoi), C_aoi, "*" ), collapse = ""), .groups = 'drop') %>%
select(- c(grp, line, speaker))
# step 2 -- remove duplicates:
df_b <- df[-which(duplicated(df$line)),]
# step 3 -- collapse `utterance`:
df_c <- df_b %>%
group_by(grp = rleid(speaker)) %>%
summarise(across(c(line, speaker), first),
utterance = str_c(utterance, collapse = ' '), .groups = 'drop') %>%
select(- grp)
# step 4 -- bind:
bind_cols(df_c, df_a)