While running a UNet traning code I found DLL load failed error. Here is the code:
'''
import torch
import scipy
import albumentations as A
from ._nnls import nnls
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from unet_model import UNet
from utilscar import (
load_checkpoint,
save_checkpoint,
get_loaders,
check_accuracy,
save_predictions_as_imgs,
)
# Hyperparameters etc.
LEARNING_RATE = 1e-4
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
BATCH_SIZE = 16
NUM_EPOCHS = 3
NUM_WORKERS = 2
IMAGE_HEIGHT = 160 # 1280 originally
IMAGE_WIDTH = 240 # 1918 originally
PIN_MEMORY = True
LOAD_MODEL = False
TRAIN_IMG_DIR = "Dataset/train_images/"
TRAIN_MASK_DIR = "Dataset/train_masks/"
VAL_IMG_DIR = "Dataset/val_images/"
VAL_MASK_DIR = "Dataset/val_masks/"
def train_fn(loader, model, optimizer, loss_fn, scaler):
loop = tqdm(loader)
for batch_idx, (data, targets) in enumerate(loop):
data = data.to(device=DEVICE)
targets = targets.float().unsqueeze(1).to(device=DEVICE)
# forward
with torch.cuda.amp.autocast():
predictions = model(data)
loss = loss_fn(predictions, targets)
# backward
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update tqdm loop
loop.set_postfix(loss=loss.item())
def main():
train_transform = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Rotate(limit=35, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
val_transform = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.Normalize(
mean=[0.0, 0.0, 0.0],
std=[1.0, 1.0, 1.0],
max_pixel_value=255.0,
),
ToTensorV2(),
],
)
model = UNet(in_channels=3, out_channels=1).to(DEVICE)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
train_loader, val_loader = get_loaders(
TRAIN_IMG_DIR,
TRAIN_MASK_DIR,
VAL_IMG_DIR,
VAL_MASK_DIR,
BATCH_SIZE,
train_transform,
val_transform,
NUM_WORKERS,
PIN_MEMORY,
)
if LOAD_MODEL:
load_checkpoint(torch.load("my_checkpoint.pth.tar"), model)
check_accuracy(val_loader, model, device=DEVICE)
scaler = torch.cuda.amp.GradScaler()
for epoch in range(NUM_EPOCHS):
train_fn(train_loader, model, optimizer, loss_fn, scaler)
# save model
checkpoint = {
"state_dict": model.state_dict(),
"optimizer":optimizer.state_dict(),
}
save_checkpoint(checkpoint)
# check accuracy
check_accuracy(val_loader, model, device=DEVICE)
# print some examples to a folder
save_predictions_as_imgs(
val_loader, model, folder="saved_images/", device=DEVICE
)
if __name__ == "__main__":
main()
'''
I found this error: from ._nnls import nnls
ImportError: DLL load failed: The specified module could not be found.
Here I want to mention that, my python is 64 bit and all the libraries are also in 64 bit. I updated everything using conda update.