Rescaling the images is part of data preprocessing, also rescaling images is called image normalization, this process is useful for providing a uniform scale for the dataset or numerical values you are using before building your model.In keras you can do this in many ways using one of the following according to your target:
If you are training using an Artificial neural network model you can use:-
"Batch normalization layer" or "Layer Normalization" or by the rescale method of keras you mentioned. You can look at this resource for more information about normalization .
https://machinelearningknowledge.ai/keras-normalization-layers-explained-for-beginners-batch-normalization-vs-layer-normalization/
to use the rescale method you mentioned:
import tensorflow as tf
from tensorflow.keras.layers import BatchNormalization
import pathlib
then import your Dataset:
Dataset_Dir = '/Dataset/ path'
image size = (256,256)
image shape = (96,96,3)
Then divide your dataset to train-test I use 70-30 percent
Training_set = tf.keras.preprocessing.image_dataset_from_directory(Dataset_Dir,batch_size= 32,
image_size= image_size,
validation_split= 0.3,subset = "training",seed =123)
Test set
Testing_set = tf.keras.preprocessing.image_dataset_from_directory(Dataset_Dir,image_size= image_size,
validation_split=0.3,seed=123,subset ="validation")
normalization layer:
normalization_layer = tf.keras.layers.experimental.preprocessing.Rescaling(1./255)
normalized_training_set = Training_set.map(lambda x, y: (normalization_layer(x), y))
training_image_batch,training_labels_batch = next(iter(normalized_training_set))
for more about this method too:
look at tensorflow tutorial:
https://www.tensorflow.org/tutorials/images/classification