I'm using the mice package to create multiple imputations. I want to create a correlations matrix (and a matrix of p-values for the correlation coefficients. I use miceadds::micombine.cor to do this. But this gives a dataframe with variables in the first to columns, and then a number of columns to contain r, p, t-values, and the like.
I'm looking for a way to turn this dataframe into a "good old" matrix with the correlation coefficient between x and y in position [x,y], and a matrix with p-values Does anyone have an easy way to do this?
Here's some code to reproduce:
data <- mtcars
mt.mis <- prodNA(mtcars, noNA = 0.1)
imputed <-mice(iris.mis, m = 5, maxit = 5, method = "pmm")
correlations<- miceadds::micombine.cor(mi.res=iris.mis, variables = c(1:3))
What I'm looking for is something like the output from cor(mtcars). Who can help?