I have implemented this classification model using Mobilenet as the base model. when it is training, the training and validation accuracies and losses moving up and down after some epochs(noted from 34th epoch training accuracy started to move up and down then other accuracies also do same).according to my knowledge curves are looking fine, but values are going up-down after some epochs .Is this normal or do I need to change something ?
Epoch 1/50
6539/6539 [==============================] - 3379s 516ms/step - loss: 2.9090 - accuracy: 0.3196 - top3_acc: 0.4849 - top5_acc: 0.5721 - val_loss: 1.7767 - val_accuracy: 0.5191 - val_top3_acc: 0.7397 - val_top5_acc: 0.8286
Epoch 2/50
6539/6539 [==============================] - 3342s 511ms/step - loss: 1.7218 - accuracy: 0.5261 - top3_acc: 0.7464 - top5_acc: 0.8385 - val_loss: 1.5645 - val_accuracy: 0.5651 - val_top3_acc: 0.7857 - val_top5_acc: 0.8669
Epoch 3/50
6539/6539 [==============================] - 3337s 510ms/step - loss: 1.5500 - accuracy: 0.5611 - top3_acc: 0.7853 - top5_acc: 0.8693 - val_loss: 1.4635 - val_accuracy: 0.5869 - val_top3_acc: 0.8064 - val_top5_acc: 0.8816
Epoch 4/50
6539/6539 [==============================] - 3343s 511ms/step - loss: 1.4469 - accuracy: 0.5859 - top3_acc: 0.8040 - top5_acc: 0.8854 - val_loss: 1.3982 - val_accuracy: 0.6012 - val_top3_acc: 0.8186 - val_top5_acc: 0.8919
Epoch 5/50
6539/6539 [==============================] - 3348s 512ms/step - loss: 1.3882 - accuracy: 0.5966 - top3_acc: 0.8153 - top5_acc: 0.8939 - val_loss: 1.3538 - val_accuracy: 0.6126 - val_top3_acc: 0.8260 - val_top5_acc: 0.8981
Epoch 6/50
6539/6539 [==============================] - 3340s 511ms/step - loss: 1.3382 - accuracy: 0.6123 - top3_acc: 0.8251 - top5_acc: 0.9011 - val_loss: 1.3192 - val_accuracy: 0.6192 - val_top3_acc: 0.8326 - val_top5_acc: 0.9033
Epoch 7/50
6539/6539 [==============================] - 3319s 508ms/step - loss: 1.3060 - accuracy: 0.6195 - top3_acc: 0.8323 - top5_acc: 0.9052 - val_loss: 1.2918 - val_accuracy: 0.6264 - val_top3_acc: 0.8359 - val_top5_acc: 0.9070
Epoch 8/50
6539/6539 [==============================] - 3314s 507ms/step - loss: 1.2744 - accuracy: 0.6249 - top3_acc: 0.8383 - top5_acc: 0.9106 - val_loss: 1.2693 - val_accuracy: 0.6312 - val_top3_acc: 0.8399 - val_top5_acc: 0.9106
Epoch 9/50
6539/6539 [==============================] - 3316s 507ms/step - loss: 1.2547 - accuracy: 0.6323 - top3_acc: 0.8419 - top5_acc: 0.9133 - val_loss: 1.2502 - val_accuracy: 0.6359 - val_top3_acc: 0.8430 - val_top5_acc: 0.9135
Epoch 10/50
6539/6539 [==============================] - 3313s 507ms/step - loss: 1.2271 - accuracy: 0.6375 - top3_acc: 0.8477 - top5_acc: 0.9166 - val_loss: 1.2339 - val_accuracy: 0.6400 - val_top3_acc: 0.8461 - val_top5_acc: 0.9157
Epoch 11/50
6539/6539 [==============================] - 3309s 506ms/step - loss: 1.2081 - accuracy: 0.6422 - top3_acc: 0.8503 - top5_acc: 0.9196 - val_loss: 1.2203 - val_accuracy: 0.6429 - val_top3_acc: 0.8489 - val_top5_acc: 0.9169
Epoch 12/50
6539/6539 [==============================] - 3315s 507ms/step - loss: 1.1863 - accuracy: 0.6477 - top3_acc: 0.8550 - top5_acc: 0.9216 - val_loss: 1.2080 - val_accuracy: 0.6473 - val_top3_acc: 0.8505 - val_top5_acc: 0.9188
Epoch 13/50
6539/6539 [==============================] - 3329s 509ms/step - loss: 1.1789 - accuracy: 0.6497 - top3_acc: 0.8568 - top5_acc: 0.9239 - val_loss: 1.1973 - val_accuracy: 0.6500 - val_top3_acc: 0.8522 - val_top5_acc: 0.9201
Epoch 14/50
6539/6539 [==============================] - 3325s 508ms/step - loss: 1.1618 - accuracy: 0.6535 - top3_acc: 0.8590 - top5_acc: 0.9254 - val_loss: 1.1870 - val_accuracy: 0.6523 - val_top3_acc: 0.8546 - val_top5_acc: 0.9215
Epoch 15/50
6539/6539 [==============================] - 3324s 508ms/step - loss: 1.1558 - accuracy: 0.6563 - top3_acc: 0.8617 - top5_acc: 0.9262 - val_loss: 1.1783 - val_accuracy: 0.6551 - val_top3_acc: 0.8555 - val_top5_acc: 0.9229
Epoch 16/50
6539/6539 [==============================] - 3325s 508ms/step - loss: 1.1380 - accuracy: 0.6618 - top3_acc: 0.8647 - top5_acc: 0.9281 - val_loss: 1.1698 - val_accuracy: 0.6573 - val_top3_acc: 0.8576 - val_top5_acc: 0.9235
Epoch 17/50
6539/6539 [==============================] - 3331s 509ms/step - loss: 1.1260 - accuracy: 0.6622 - top3_acc: 0.8662 - top5_acc: 0.9304 - val_loss: 1.1625 - val_accuracy: 0.6590 - val_top3_acc: 0.8593 - val_top5_acc: 0.9248
Epoch 18/50
6539/6539 [==============================] - 3327s 509ms/step - loss: 1.1204 - accuracy: 0.6658 - top3_acc: 0.8672 - top5_acc: 0.9299 - val_loss: 1.1569 - val_accuracy: 0.6605 - val_top3_acc: 0.8600 - val_top5_acc: 0.9260
Epoch 19/50
6539/6539 [==============================] - 3308s 506ms/step - loss: 1.1093 - accuracy: 0.6667 - top3_acc: 0.8698 - top5_acc: 0.9334 - val_loss: 1.1495 - val_accuracy: 0.6625 - val_top3_acc: 0.8616 - val_top5_acc: 0.9263
Epoch 20/50
6539/6539 [==============================] - 3320s 508ms/step - loss: 1.0955 - accuracy: 0.6710 - top3_acc: 0.8726 - top5_acc: 0.9342 - val_loss: 1.1438 - val_accuracy: 0.6660 - val_top3_acc: 0.8621 - val_top5_acc: 0.9274
Epoch 21/50
6539/6539 [==============================] - 3362s 514ms/step - loss: 1.0892 - accuracy: 0.6724 - top3_acc: 0.8733 - top5_acc: 0.9355 - val_loss: 1.1385 - val_accuracy: 0.6667 - val_top3_acc: 0.8631 - val_top5_acc: 0.9280
Epoch 22/50
6539/6539 [==============================] - 3371s 515ms/step - loss: 1.0852 - accuracy: 0.6733 - top3_acc: 0.8735 - top5_acc: 0.9358 - val_loss: 1.1330 - val_accuracy: 0.6678 - val_top3_acc: 0.8643 - val_top5_acc: 0.9290
Epoch 23/50
6539/6539 [==============================] - 3367s 515ms/step - loss: 1.0733 - accuracy: 0.6768 - top3_acc: 0.8753 - top5_acc: 0.9367 - val_loss: 1.1284 - val_accuracy: 0.6686 - val_top3_acc: 0.8647 - val_top5_acc: 0.9293
Epoch 24/50
6539/6539 [==============================] - 3362s 514ms/step - loss: 1.0718 - accuracy: 0.6779 - top3_acc: 0.8768 - top5_acc: 0.9375 - val_loss: 1.1240 - val_accuracy: 0.6706 - val_top3_acc: 0.8663 - val_top5_acc: 0.9296
Epoch 25/50
6539/6539 [==============================] - 3374s 516ms/step - loss: 1.0589 - accuracy: 0.6805 - top3_acc: 0.8786 - top5_acc: 0.9392 - val_loss: 1.1198 - val_accuracy: 0.6712 - val_top3_acc: 0.8661 - val_top5_acc: 0.9300
Epoch 26/50
6539/6539 [==============================] - 3370s 515ms/step - loss: 1.0527 - accuracy: 0.6829 - top3_acc: 0.8786 - top5_acc: 0.9384 - val_loss: 1.1157 - val_accuracy: 0.6721 - val_top3_acc: 0.8669 - val_top5_acc: 0.9303
Epoch 27/50
6539/6539 [==============================] - 3349s 512ms/step - loss: 1.0490 - accuracy: 0.6837 - top3_acc: 0.8810 - top5_acc: 0.9391 - val_loss: 1.1118 - val_accuracy: 0.6727 - val_top3_acc: 0.8682 - val_top5_acc: 0.9307
Epoch 28/50
6539/6539 [==============================] - 3362s 514ms/step - loss: 1.0460 - accuracy: 0.6849 - top3_acc: 0.8800 - top5_acc: 0.9401 - val_loss: 1.1081 - val_accuracy: 0.6741 - val_top3_acc: 0.8689 - val_top5_acc: 0.9312
Epoch 29/50
6539/6539 [==============================] - 3357s 513ms/step - loss: 1.0361 - accuracy: 0.6883 - top3_acc: 0.8819 - top5_acc: 0.9405 - val_loss: 1.1048 - val_accuracy: 0.6751 - val_top3_acc: 0.8696 - val_top5_acc: 0.9318
Epoch 30/50
6539/6539 [==============================] - 3344s 511ms/step - loss: 1.0273 - accuracy: 0.6890 - top3_acc: 0.8842 - top5_acc: 0.9421 - val_loss: 1.1023 - val_accuracy: 0.6748 - val_top3_acc: 0.8703 - val_top5_acc: 0.9322
Epoch 31/50
6539/6539 [==============================] - 3352s 513ms/step - loss: 1.0210 - accuracy: 0.6911 - top3_acc: 0.8849 - top5_acc: 0.9438 - val_loss: 1.0996 - val_accuracy: 0.6758 - val_top3_acc: 0.8708 - val_top5_acc: 0.9324
Epoch 32/50
6539/6539 [==============================] - 3351s 512ms/step - loss: 1.0183 - accuracy: 0.6930 - top3_acc: 0.8861 - top5_acc: 0.9434 - val_loss: 1.0964 - val_accuracy: 0.6776 - val_top3_acc: 0.8711 - val_top5_acc: 0.9328
Epoch 33/50
6539/6539 [==============================] - 3334s 510ms/step - loss: 1.0110 - accuracy: 0.6955 - top3_acc: 0.8873 - top5_acc: 0.9432 - val_loss: 1.0939 - val_accuracy: 0.6780 - val_top3_acc: 0.8723 - val_top5_acc: 0.9334
Epoch 34/50
6539/6539 [==============================] - 3329s 509ms/step - loss: 1.0023 - accuracy: 0.6967 - top3_acc: 0.8886 - top5_acc: 0.9451 - val_loss: 1.0910 - val_accuracy: 0.6781 - val_top3_acc: 0.8727 - val_top5_acc: 0.9338
Epoch 35/50
6539/6539 [==============================] - 3322s 508ms/step - loss: 1.0021 - accuracy: 0.6966 - top3_acc: 0.8891 - top5_acc: 0.9447 - val_loss: 1.0885 - val_accuracy: 0.6785 - val_top3_acc: 0.8730 - val_top5_acc: 0.9342
Epoch 36/50
6539/6539 [==============================] - 3323s 508ms/step - loss: 0.9939 - accuracy: 0.6987 - top3_acc: 0.8903 - top5_acc: 0.9462 - val_loss: 1.0864 - val_accuracy: 0.6792 - val_top3_acc: 0.8738 - val_top5_acc: 0.9341
Epoch 37/50
6539/6539 [==============================] - 3363s 514ms/step - loss: 0.9941 - accuracy: 0.6988 - top3_acc: 0.8900 - top5_acc: 0.9458 - val_loss: 1.0842 - val_accuracy: 0.6794 - val_top3_acc: 0.8739 - val_top5_acc: 0.9344
Epoch 38/50
6539/6539 [==============================] - 3337s 510ms/step - loss: 0.9916 - accuracy: 0.6987 - top3_acc: 0.8904 - top5_acc: 0.9463 - val_loss: 1.0823 - val_accuracy: 0.6804 - val_top3_acc: 0.8743 - val_top5_acc: 0.9347
Epoch 39/50
6539/6539 [==============================] - 3323s 508ms/step - loss: 0.9797 - accuracy: 0.7035 - top3_acc: 0.8933 - top5_acc: 0.9469 - val_loss: 1.0800 - val_accuracy: 0.6809 - val_top3_acc: 0.8754 - val_top5_acc: 0.9355
Epoch 40/50
6539/6539 [==============================] - 3327s 509ms/step - loss: 0.9802 - accuracy: 0.7013 - top3_acc: 0.8924 - top5_acc: 0.9472 - val_loss: 1.0781 - val_accuracy: 0.6813 - val_top3_acc: 0.8748 - val_top5_acc: 0.9354
Epoch 41/50
6539/6539 [==============================] - 3352s 513ms/step - loss: 0.9724 - accuracy: 0.7032 - top3_acc: 0.8939 - top5_acc: 0.9484 - val_loss: 1.0758 - val_accuracy: 0.6819 - val_top3_acc: 0.8757 - val_top5_acc: 0.9354
Epoch 42/50
6539/6539 [==============================] - 3343s 511ms/step - loss: 0.9687 - accuracy: 0.7070 - top3_acc: 0.8945 - top5_acc: 0.9493 - val_loss: 1.0746 - val_accuracy: 0.6816 - val_top3_acc: 0.8755 - val_top5_acc: 0.9356
Epoch 43/50
6539/6539 [==============================] - 3354s 513ms/step - loss: 0.9641 - accuracy: 0.7090 - top3_acc: 0.8952 - top5_acc: 0.9489 - val_loss: 1.0723 - val_accuracy: 0.6826 - val_top3_acc: 0.8765 - val_top5_acc: 0.9359
Epoch 44/50
6539/6539 [==============================] - 3356s 513ms/step - loss: 0.9630 - accuracy: 0.7070 - top3_acc: 0.8963 - top5_acc: 0.9491 - val_loss: 1.0709 - val_accuracy: 0.6827 - val_top3_acc: 0.8765 - val_top5_acc: 0.9363
Epoch 45/50
6539/6539 [==============================] - 3346s 512ms/step - loss: 0.9561 - accuracy: 0.7091 - top3_acc: 0.8973 - top5_acc: 0.9499 - val_loss: 1.0694 - val_accuracy: 0.6831 - val_top3_acc: 0.8769 - val_top5_acc: 0.9363
Epoch 46/50
2189/6539 [=========>....................] - ETA: 33:10 - loss: 0.9623 - accuracy: 0.7072 - top3_acc: 0.8963 - top5_acc: 0.9485dcs2016csc007@hpc2:~$ 0.8939
Loss curves