I made a tensorflow Model and i use tensorflow serving to deploy this model, but when i can build the restful request params the model need
curl -d '{"instances": [[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]}'
-X POST http://localhost:8501/v1/models/shipping_predict:predict
it call back "error": "instances is a plain list, but expecting list of objects as multiple input tensors required as per tensorinfo_map"
this is my model
# prepare each input head
in_layers = list()
em_layers = list()
#
# customer
in_layer_customer = Input(shape=(1,))
em_layer_customer = Embedding(5000, 10)(in_layer_customer)
em_layer_customer = layers.Reshape([1 * 10])(em_layer_customer)
in_layers.append(in_layer_customer)
em_layers.append(em_layer_customer)
# salesman
in_layer_sale = Input(shape=(1,))
em_layer_sale = Embedding(500, 10)(in_layer_sale)
em_layer_sale = layers.Reshape([1 * 10])(em_layer_sale)
in_layers.append(in_layer_sale)
em_layers.append(em_layer_sale)
# business_type
in_layer_businessType = Input(shape=(1,))
em_layer_businessType = Embedding(100, 10)(in_layer_businessType)
em_layer_businessType = layers.Reshape([1 * 10])(em_layer_businessType)
in_layers.append(in_layer_businessType)
em_layers.append(em_layer_businessType)
# 20
in_layer_20 = Input(shape=(1,))
em_layer_20 = layers.Dense(16, activation='relu')(in_layer_20)
in_layers.append(in_layer_20)
em_layers.append(em_layer_20)
# 40
in_layer_40 = Input(shape=(1,))
em_layer_40 = layers.Dense(16, activation='relu')(in_layer_40)
in_layers.append(in_layer_40)
em_layers.append(em_layer_40)
# 45
in_layer_45 = Input(shape=(1,))
em_layer_45 = layers.Dense(16, activation='relu')(in_layer_45)
in_layers.append(in_layer_45)
em_layers.append(em_layer_45)
# other
in_layer_other = Input(shape=(1,))
em_layer_other = layers.Dense(16, activation='relu')(in_layer_other)
in_layers.append(in_layer_other)
em_layers.append(em_layer_other)
# dischargingPort
in_layer_dischargingPortName = Input(shape=(1,))
em_layer_dischargingPortName = Embedding(5000, 10)(in_layer_dischargingPortName)
em_layer_dischargingPortName = layers.Reshape([1 * 10])(em_layer_dischargingPortName)
in_layers.append(in_layer_dischargingPortName)
em_layers.append(em_layer_dischargingPortName)
# MBL Method
in_layer_mbl = Input(shape=(1,))
em_layer_mbl = layers.Dense(16, activation='relu')(in_layer_mbl)
in_layers.append(in_layer_mbl)
em_layers.append(em_layer_mbl)
# atdMouth
in_layer_atdMouth = Input(shape=(1,))
em_layer_atdMouth = Embedding(100, 10)(in_layer_atdMouth)
em_layer_atdMouth = layers.Reshape([1 * 10])(em_layer_atdMouth)
in_layers.append(in_layer_atdMouth)
em_layers.append(em_layer_atdMouth)
merge = Concatenate()(em_layers)
dense = Dense(32, activation='relu')(merge)
output = Dense(1)(dense)
model = Model(inputs=in_layers, outputs=output)