I'm performing hierarchical cluster analysis using Ward's method on a dataset containing 1000 observations and 37 variables (all are 5-point likert-scales).
First, I ran the analysis in SPSS via
CLUSTER Var01 to Var37
/METHOD WARD
/MEASURE=SEUCLID
/ID=ID
/PRINT CLUSTER(2,10) SCHEDULE
/PLOT DENDROGRAM
/SAVE CLUSTER(2,10).
FREQUENCIES CLU2_1.
I additionaly performed the analysis in R:
datA <- subset(dat, select = Var01:Var37)
dist <- dist(datA, method = "euclidean")
hc <- hclust(d = dist, method = "ward.D2")
table(cutree(hc, k = 2))
The resulting cluster sizes are:
1 2
SPSS 712 288
R 610 390
These results are obviously confusing to me, as they differ substentially (which becomes highly visible when observing the dendrograms; also applies for the 3-10 clusters solutions). "ward.D2"
takes into account the squared distance, if I'm not mistaken, so I included the simple distance matrix here. However, I tried several (combinations) of distance and clustering methods, e.g. EUCLID
instead of SEUCLID
, squaring the distance matrix in R, applying "ward.D"
method,.... I also looked at the distance matrices generated by SPSS and R, which are identical (when applying the same method). Ultimately, I excluded duplicate cases (N=29) from my data, guessing that those might have caused differences when being allocated (randomly) at a certain point. All this did not result in matching outputs in R and SPSS.
I tried running the analysis with the agnes()
function from the cluster
package, which resulted in - again - different results compared to SPSS and even hclust()
(But that's a topic for another post, I guess).
Are the underlying clustering procedures that different between the programs/packages? Or did I overlook a crucial detail? Is there a "correct" procedure that replicates the results yielded in SPSS?