I am training a tensorflow DNN model which gives results like this,
Epoch 1/60
119/119 [==============================] - 273s 2s/step - loss: 1.4571 - accuracy: 0.3004 - val_loss: 1.3791 - val_accuracy: 0.2999
Epoch 2/60
119/119 [==============================] - 281s 2s/step - loss: 1.3186 - accuracy: 0.3503 - val_loss: 1.3658 - val_accuracy: 0.3193
Epoch 3/60
119/119 [==============================] - 274s 2s/step - loss: 1.2985 - accuracy: 0.3703 - val_loss: 1.3475 - val_accuracy: 0.2962
Epoch 4/60
119/119 [==============================] - 271s 2s/step - loss: 1.2885 - accuracy: 0.3829 - val_loss: 1.3258 - val_accuracy: 0.3162
Can I generate a dataframe having epochs, loss, accuracy, val_accuracy and val_loss ?
like
epochs loss accuracy val_loss val_accuracy
1 1.4571 0.3004 1.3791 0.2999
2 1.3186 0.3503 1.3658 0.3193
3 1.2985 0.3703 1.3475 0.2962
4 1.2885 0.3829 1.3258 0.3162