1
votes

I seem to have a problem with glmnet. I want to run a regular LASSO regression to understand which of 10 variables (Dim1, Dim2...) contribute the most to predict my continuous variable ptScores. All variables are continuous, validInd is a data.frame, both trainingData and validationData are character vector with length 95.

run the following code:

lambda_seq <- 10^seq(2, -2, by = -.1)
trainingData = sample(rownames(validInd), 190/2)
validationData = subjects$ID[subjects$ID %in% trainingData]

LASSO = cv.glmnet(data.matrix(validInd[trainingData,-11]), validInd[trainingData,11], lambda = lambda_seq)
plot(LASSO)

predictLASSO = predict.glmnet(object = LASSO, s = "lambda.min", 
                              newx = data.matrix(validInd[validationData,-11]))

glmnet output

and get this error after the last step:

Error in array(x, c(length(x), 1L), if (!is.null(names(x))) list(names(x),  : 
  'data' must be of a vector type, was 'NULL'

I have tried to use all the data in the prediction as well, but got the same error.

Reproducible example:

subjects is this table:

ID  Name    Year    Dim#1   Dim#2   Dim#3   Dim#4   Dim#5   Dim#6   Dim#7   Dim#8   Dim#9   Dim#10  ptScore
X004 y7 X004    y7  14.2594361560831    1.76025391802766    -0.668570729483714  -1.64432433500694   -3.11101507888161   -2.93744325366336   2.39088933956153    -0.632863861457362  -2.01542044174992   0.397373751034953   0.205293413285948
X006 y7 X006    y7  7.36769839988443    1.40189322331541    -1.51699477009677   -2.11631615238169   2.44537900196125    0.281302344948175   1.04396856774743    -1.21825370453226   9.62767430413176E-02    -4.34274219927117E-02   0.402603441521971
X010 y7 X010    y7  -2.19534888488862   -5.71552997812972   -2.54798524356995   -5.46532854493649   2.0349871802497 1.86977495475099    1.0102785949972 -0.648213341255023  1.19509421829095    -0.474244031626319  0.255199305410578
X011 y7 X011    y7  4.47733296227365    4.41612174858369E-02    1.04199108489624    0.507709900129822   -1.49702171420879   0.562924762828593   -2.09921985421718   -1.10136884350998   -1.14148162529434   -1.87562935354984   0.541577519851939
X012 y7 X012    y7  -6.3214287141386    1.75365412184414    -0.623570056714132  2.62771487690855    -0.755944893491157  1.11946631740662    0.377908536769657   -0.375206246075601  -0.158315945250462  1.60467668360538    0.723807672288481
X015 y7 X015    y7  4.43675650235116    0.125831659587608   -1.63660536215786   0.704457166310484   -0.485788420367662  -1.23623362303915   -2.94185073254018   0.371005042652702   0.390480922397501   -0.751322935004845  0.566289988658306
X016 y7 X016    y7  2.22481961161996    -0.495782079794814  -0.936901673888438  3.46441249413796    -0.299713046858658  1.35032843918957E-02    -0.446639771849217  -2.34040678094425   0.413652502415691   0.352777159566364   0.643054677259255
X022 y7 X022    y7  10.4159916313874    0.363807261537086   2.21572539303282    2.39473567103644    -8.21247405890959E-02   0.121713032667271   -0.172976208049391  0.399694378320414   0.813322631516825   -1.34474965111697   0.177545698165701
X023 y7 X023    y7  -4.8775402107091    -4.12501756265517   -2.27881222191454   -1.86202209268234   -0.502096138361181  1.7091075290976 -0.377341826579625  -0.361068200236776  -1.04929174692168   -1.83743917666367   0.441999945490185
X024 y7 X024    y7  -13.6186193549591   4.53794647377105    -1.1640424147117    0.853074420261857   3.00276105179634    2.2621696100755 1.54863273082483    1.46874484773545    0.642079320801509   -1.17894488952068   0.740868185192386
X025 y7 X025    y7  -8.28369499974165   0.795185031920821   3.36606773135854    1.30335423715504    1.31846438526884    1.92128352973198    0.119247908530787   1.98937148422595    0.98667359874469    0.742089792025553   0.638259141472873
X026 y7 X026    y7  -9.126960905357 1.08725723261223    -0.573951041914609  1.67782607044232    0.198336623247584   -2.86953122246331   1.68852114521665    0.549962201982335   -0.380286483868369  1.01628826947139    0.759959459159294
X028 y7 X028    y7  -5.25213145411614   -1.96999472344059   1.42004682865149    -0.91455749550075   0.53138842064767    0.372108093120868   0.999674017662924   0.983440963089232   -0.45271465928228   1.52238785156272    0.672605306141995
X029 y7 X029    y7  -3.93494816396007   6.84260030634352    4.84132536930456    -0.703242523684553  1.27001300421836    2.88402236252198    -1.41616084473683   0.18558627899548    -0.255520180512287  -0.11825893347637   0.656308969574663
X031 y7 X031    y7  -6.16292963856133   4.85060509570318    4.2126847620166 -2.43553872291154   -0.43435465583943   1.37553276359068    -0.579643934018511  1.17488164948438    1.32392129023095    2.71520764572902    0.718541909152817
X032 y7 X032    y7  -1.7152551073983    -0.234688383679724  1.26286864412284    -1.86322100220324   1.63507032962317    1.94284519738854    -0.367428571302029  -1.62696732853019   -1.20990245118527   1.05664015163771    0.583917996518399
X033 y7 X033    y7  -10.9148039117832   -3.36356028164647   -1.34182187001758   -2.07743121838056   3.3930211353689 -1.69081847936732   1.50845514067627    0.649001132628532   1.8237842283369 1.06407445448196    0.711772373386066
X034 y7 X034    y7  -10.4794967653808   7.01058540479745    2.12270784102553    1.92426221678289    -3.81951360261083   1.98320703989698    0.344382033696651   1.69608467068158    7.70807524085422E-02    0.281493387449773   0.746483819273614
X035 y7 X035    y7  -0.38702071945627   -0.037845940584369  0.253390462384328   2.45809313523985    1.3912538136    0.396616621403596   -0.652711117741324  -2.02482113921603   0.735140206294811   0.114276526211146   0.694123571039207
X036 y7 X036    y7  -3.34295132184417   -4.41772971639855   -2.42496546304556   1.43539718446744    0.24081427494968    1.27215110035618    1.57122124745865    -9.07926785309553E-02   -0.500599334998908  0.3526156338948 0.482638053394283
X037 y7 X037    y7  1.36505270190872    0.154232922168672   3.72787626189391    -3.58555329515882   -0.258287182557876  3.77695923237513    2.06363274503012    -7.44424212333302E-02   -0.243026580519433  0.754189664133906   0.570798239999777
X038 y7 X038    y7  -7.57715353844738   1.49530333294752    -1.3618206776225    0.285673183897211   -2.00257652679547   -2.9316605063682    -5.78101977945745E-02   1.21490778203858    -1.41511921486559   0.910320527049355   0.717900142262124
X040 y7 X040    y7  -3.71657538478269   2.9915033382211 -2.37358232145532   -1.74140110557328   0.879562060220561   -0.186006811914471  -3.03422383938489   7.09245387496289E-02    1.69266042104312    9.11003346977334E-02    0.664458698220819
X041 y7 X041    y7  3.56870600204357    1.89948021381691    -1.18807030156106   -5.11225314209496   -1.72892843911463   0.836946514430054   0.825742473828449   2.18107132564707    -1.41175755455589   -3.15021775639787E-02   0.434972906089723
X046 y7 X046    y7  -3.2070611126168    1.9658134244394 -4.96699587273018   2.58507257721916    0.677391573876038   -0.794142281429037  1.76204196290053    -1.24528928618193   1.30435133802695    -0.348545696553259  0.731839649682648
X048 y7 X048    y7  -8.76908227910536   -2.58866919749497   -3.47359591232635   2.39032746268097    -0.435285448011596  -0.611678098455047  -0.387857745557412  7.5630308277455E-04 2.82150278577457    -1.05165750982245   0.554033843744992
X050 y7 X050    y7  0.475793940378902   0.532527233132171   1.09069683661794    -0.273929007898906  3.56606669789417    -5.32586521203006E-03   -2.06199829748345   0.916218309187297   -0.511609127771478  -0.829866398097593  0.586056512557182
X052 y7 X052    y7  0.437961232041306   -0.525296154559809  4.12777505698584    0.928000030902302   1.50933898151927    0.536752855000547   -1.35328387942828   -3.45343510641525E-02   0.342800240728446   -1.36024230292128   0.503553558040187
X053 y7 X053    y7  -6.35893956287975   -0.481951608723444  4.49223165394607    -0.170823560932413  1.07820528949514    1.90426407261065    1.6976781544118 1.60663679082296    0.377536827292087   -4.32712770127625E-02   0.694829758520922
X054 y7 X054    y7  -1.6173741934411    -0.78544603543625   -1.5586277454018    0.276715960571991   -1.37115552595115   -1.43527489189538   -0.944340962417392  -0.215524444567615  -1.44942417414991   1.11503418539154    0.635810834838745
X058 y7 X058    y7  -0.533953659527016  -3.59419670524299   -6.21847389392613E-02   3.12248184904771    -0.970549462282703  1.73600706110163    0.716076363110235   -2.03157502654338   -0.185983613882669  -1.13023192445807   0.544695504576695
X060 y7 X060    y7  -9.33029002765201   -7.33684242872651   0.251727648993351   1.61228307501029    1.58272329429705    -1.0149446684102    -0.271252146648448  1.44859865101697    0.401334428833948   1.56787478926467    0.591928043482019
X062 y7 X062    y7  4.97202858939999    -0.405994077513881  -4.7355765771677    0.371412533877246   -1.33579080581324   0.341680698379248   0.373782667456135   -1.36795891418662   0.201812628898999   -0.509864200796645  0.412265678072685
X064 y7 X064    y7  1.56303493507485    1.05410634364062    -1.11670857011548   -2.77203704570765   -1.32949528606372   -1.61433165655895   1.32918153646877    -0.312768874242464  -0.688931739007988  0.734214203780031   0.453251813757181
X065 y7 X065    y7  5.05828924636548    0.908758251845031   3.62690379671223    0.164838132208794   0.221854014751618   0.643668333644285   -0.382838756002362  0.676441843706409   1.7103682845196 0.853707219236365   0.32293905373328
X066 y7 X066    y7  -2.40603983747625   7.318117319931  -8.68510001944344E-02   -0.397226292933707  0.152339697912322   2.09248669870129    -0.26977707763143   -1.62178289672658   0.848545563744191   -1.38664444002672   0.700043422915476
X067 y7 X067    y7  -6.62949725610905   1.68523719992851    0.851585358021073   0.951786423099745   -0.616021491459863  -2.82842995392253   1.16159509426505    0.493196821437061   -2.39793328950165   -1.38433590850038   0.601160811740337
X069 y7 X069    y7  1.47542719023891    13.0641832135398    -0.581357473415856  -0.714399303360872  -1.79962725645702   -1.81831420473663   0.610502113121055   -2.706236099573 0.347757363707449   0.293755342189694   0.754695271073973
X070 y7 X070    y7  -1.72139117485005   -3.59264407072097   -1.12987545996396   2.78410751589509    1.18420494996691    -1.66990029841491   -1.31210755888876   -1.64519705582319   -1.17749982138072   -0.789854195043032  0.596281826903686
X072 y7 X072    y7  5.31181586621353    -1.76062594156829   0.978811817696108   0.805416187256626   -0.101536944556724  0.733573760323421   -0.685405370241293  -0.807975536080938  -0.63928589312435   -0.776631166896858  0.342870418080616
X073 y7 X073    y7  -6.83154542538091   -3.92242822624881   -1.30735562714719   -3.13070017851774   -1.07012896190267   1.61291603617646    -0.447759632130991  -0.214244993352655  -0.585066675773694  -0.565011919418235  0.596791110310168
X079 y7 X079    y7  6.19683396427599    -0.45015295862773   -0.589001379439875  -2.85912975635691   -1.96069465183664   -1.33320367366084   2.38154698610703    -0.138158506908214  -1.00374447348715   1.1321702238712 0.29798849247412
X080 y7 X080    y7  6.20901800903392    5.43939505549203    -3.98672804043326   -1.6983742019417    -2.17242534555216   -3.89485271347152   1.60686298747452    -1.5078090986148    -1.05199703793871   -1.5862334877556    0.502676441557364
X082 y7 X082    y7  0.6510182495572 -3.82029305675754   6.14830660856756    2.39568264624447    1.51859911006723    3.43748132085452    2.98300921884542E-03    1.02046197057199E-03    -3.25206786681409E-02   1.37307432097495    0.512226253331402
X084 y7 X084    y7  -5.05915610597868   1.28231684653798    -3.16813452113816   3.81398978942311E-02    -0.26056658322319   -0.607570108068939  -2.26895660622817   -0.280121103992718  1.1581557206668 0.70719181665203    0.758975946511367
X087 y7 X087    y7  -2.87440758130519   -1.56614425216859   -0.214685578900002  2.61868788902779    -0.549949439830095  1.99035737918547    -0.307185247663762  -2.17612427977269   -1.07670874867566   -0.302842450831714  0.639111357004194
X089 y7 X089    y7  -7.2321169776611    -3.45940607493965   -0.896630636558091  -0.624289080870102  3.37973009314874    -0.660949568507029  -1.28382758970168   1.61495582985708    -0.236546232606131  0.743689477887689   0.684182777346267
X090 y7 X090    y7  5.8759449122214 3.27805104437807    -4.07645642306576   1.31539148541223    -0.266021698028939  -0.695419677613201  0.889055163828194   2.32893377555772E-02    1.20358476072801    1.29387076400352    0.419446528984698
X092 y7 X092    y7  5.77420047603891    -1.17329563768878   0.445047009024658   1.2028311977189 -2.09516788500395   -0.503860560134249  -0.440837437962766  1.85501315350221    -0.834761299098988  0.456883238407818   0.343706388464323
X093 y7 X093    y7  9.24685096556148    2.0100787128997 1.681436650306  3.03348652975405    -1.08811689969173   -1.13694466537189   -1.27936614497546   0.348021793918123   -0.429656061648232  -2.27609340681847   0.310623710348242
X094 y7 X094    y7  13.4618107876782    -3.94822016837025   5.05159247878004    1.97556287390166    3.73953089973484    -0.646746115568399  0.965160056105702   0.676367876074884   2.28436942504023    0.537227025430724   0
X100 y7 X100    y7  -5.88798347467999   -2.25570846537281   -2.27257310819712   2.25978831635043    -1.87020337507398   -0.349201035751804  0.244248986726665   -1.55416432151377   -0.903176091406223  0.439194502863558   0.648524886958248
X102 y7 X102    y7  -0.719752186559132  8.18956111960742    2.67845648218982    -2.71471106207068   1.42202429189887    -0.524542225331085  0.447062271900674   0.686175123124667   -1.29836166579492   -0.308340551448655  0.719861271366769
X103 y7 X103    y7  13.2478766364026    0.752585450596604   2.0853104095222 -0.737709229030171  -1.17014153049354   -2.15743132778219   0.654373324873155   -0.927636291502917  -1.85545309230693   -8.19019392079715E-02   0.270433756274452
X105 y7 X105    y7  2.90005648557469    1.7193255259151 -1.21587523209629   -0.427177101578488  -0.627556210423172  -3.99113235385036   1.25742312331302    0.040912848245426   -0.785061544873709  0.493921235479174   0.602263270046018
X106 y7 X106    y7  -4.60472917537252   -5.56640545961895   0.770010852917855   -3.01183314585768   -0.975570824177974  1.73607501284895    -1.28369536274259   0.137828528824118   -1.10854706826854   -0.165315956464549  0.448934375317496
X108 y7 X108    y7  6.5459572482018 -0.792755406433753  -1.95714624076072   -9.50434640321064E-02   -5.30063096031214E-02   -0.38580608118101   -4.11031240875448E-02   0.279569541388208   1.1895509027746 -0.255145074826884  0.113352115264063
X111 y7 X111    y7  -2.42539983228739   -5.41900054828541   1.17653088275733    -0.590160767698779  1.72503186163854    2.01686477861317    1.37795156556941    9.42444506993529E-02    1.63959299252878    -1.18845953874891   0.360989555160435
X112 y7 X112    y7  5.3250172913726 -3.66332040322174   3.3538680995316 2.0479624176086 1.24410020087761    -8.44328442600435E-02   -0.106295599600603  2.30338122773556    0.115211699931763   -0.330963225779836  0.303887289044354
X114 y7 X114    y7  7.24362142680027    -2.04523989830419   -1.68861850924316   1.05488084601232    -2.16757878870729   -1.56116361874208   1.15901958361976    1.51582102854526    -1.77539431197779   0.148843856238521   0.396856395957134
X115 y7 X115    y7  9.70789576557706    2.15415360808665    -0.774767736625052  -2.02622786105656   -6.83272897932898E-03   -1.25979936594413   -0.619358064016897  1.48545525633581    1.23881666328091    -0.473892068691094  0.15763059917753
X118 y7 X118    y7  5.20719333032362    -2.37368717020733   -1.32574911013336   -2.70910591219905   0.945739499835788   -0.394056048048146  -0.299532916420157  0.403463903751592   0.930547005874251   -0.686518257590447  0.192687438493111
X119 y7 X119    y7  0.599963880759262   -1.04269222058587   4.27204142269578    3.20972399672777    -1.33346444179932   -1.23379841268799   -0.514526033076736  -4.03518177966058E-02   -2.20437447323995   -0.155625307891573  0.603501689047888
X120 y7 X120    y7  5.03891337622233    -4.37958479507978   -3.75958410005882   -2.41737564483433   -2.65093584245105   6.38678877360447E-02    -3.76307051597622   -0.306951328262414  5.06385240379942E-02    1.80418407493883    0.352064145163263
X121 y7 X121    y7  2.94579461165834    -1.53944682079578   -2.18511806792739   8.52317889470527E-02    0.773374097566854   0.908527198741026   -1.06436773077894   -0.106908974206049  3.77291796895366    -1.43914893232295   0.485354296934085

validInd is this table (I have trimmed 125 out of 190 rows, rownames are here in the first colum - it's not a variable):

rownames    Dim#1   Dim#2   Dim#3   Dim#4   Dim#5   Dim#6   Dim#7   Dim#8   Dim#9   Dim#10  ptScore
X033 y7 -10.9148039117832   -3.36356028164647   -1.34182187001758   -2.07743121838056   3.3930211353689 -1.69081847936732   1.50845514067627    0.649001132628532   1.8237842283369 1.06407445448196    0.711772373386066
X069 y7 1.47542719023891    13.0641832135398    -0.581357473415856  -0.714399303360872  -1.79962725645702   -1.81831420473663   0.610502113121055   -2.706236099573 0.347757363707449   0.293755342189694   0.754695271073973
X118 y7 5.20719333032362    -2.37368717020733   -1.32574911013336   -2.70910591219905   0.945739499835788   -0.394056048048146  -0.299532916420157  0.403463903751592   0.930547005874251   -0.686518257590447  0.192687438493111
X067 y7 -6.62949725610905   1.68523719992851    0.851585358021073   0.951786423099745   -0.616021491459863  -2.82842995392253   1.16159509426505    0.493196821437061   -2.39793328950165   -1.38433590850038   0.601160811740337
X054 y7 -1.6173741934411    -0.78544603543625   -1.5586277454018    0.276715960571991   -1.37115552595115   -1.43527489189538   -0.944340962417392  -0.215524444567615  -1.44942417414991   1.11503418539154    0.635810834838745
X038 y7 -7.57715353844738   1.49530333294752    -1.3618206776225    0.285673183897211   -2.00257652679547   -2.9316605063682    -5.78101977945745E-02   1.21490778203858    -1.41511921486559   0.910320527049355   0.717900142262124
X080 y7 6.20901800903392    5.43939505549203    -3.98672804043326   -1.6983742019417    -2.17242534555216   -3.89485271347152   1.60686298747452    -1.5078090986148    -1.05199703793871   -1.5862334877556    0.502676441557364
X060 y7 -9.33029002765201   -7.33684242872651   0.251727648993351   1.61228307501029    1.58272329429705    -1.0149446684102    -0.271252146648448  1.44859865101697    0.401334428833948   1.56787478926467    0.591928043482019
X112 y7 5.3250172913726 -3.66332040322174   3.3538680995316 2.0479624176086 1.24410020087761    -8.44328442600435E-02   -0.106295599600603  2.30338122773556    0.115211699931763   -0.330963225779836  0.303887289044354
X079 y7 6.19683396427599    -0.45015295862773   -0.589001379439875  -2.85912975635691   -1.96069465183664   -1.33320367366084   2.38154698610703    -0.138158506908214  -1.00374447348715   1.1321702238712 0.29798849247412
X103 y7 13.2478766364026    0.752585450596604   2.0853104095222 -0.737709229030171  -1.17014153049354   -2.15743132778219   0.654373324873155   -0.927636291502917  -1.85545309230693   -8.19019392079715E-02   0.270433756274452
X064 y7 1.56303493507485    1.05410634364062    -1.11670857011548   -2.77203704570765   -1.32949528606372   -1.61433165655895   1.32918153646877    -0.312768874242464  -0.688931739007988  0.734214203780031   0.453251813757181
X114 y7 7.24362142680027    -2.04523989830419   -1.68861850924316   1.05488084601232    -2.16757878870729   -1.56116361874208   1.15901958361976    1.51582102854526    -1.77539431197779   0.148843856238521   0.396856395957134
X034 y7 -10.4794967653808   7.01058540479745    2.12270784102553    1.92426221678289    -3.81951360261083   1.98320703989698    0.344382033696651   1.69608467068158    7.70807524085422E-02    0.281493387449773   0.746483819273614
X041 y7 3.56870600204357    1.89948021381691    -1.18807030156106   -5.11225314209496   -1.72892843911463   0.836946514430054   0.825742473828449   2.18107132564707    -1.41175755455589   -3.15021775639787E-02   0.434972906089723
X119 y7 0.599963880759262   -1.04269222058587   4.27204142269578    3.20972399672777    -1.33346444179932   -1.23379841268799   -0.514526033076736  -4.03518177966058E-02   -2.20437447323995   -0.155625307891573  0.603501689047888
X004 y7 14.2594361560831    1.76025391802766    -0.668570729483714  -1.64432433500694   -3.11101507888161   -2.93744325366336   2.39088933956153    -0.632863861457362  -2.01542044174992   0.397373751034953   0.205293413285948
X106 y7 -4.60472917537252   -5.56640545961895   0.770010852917855   -3.01183314585768   -0.975570824177974  1.73607501284895    -1.28369536274259   0.137828528824118   -1.10854706826854   -0.165315956464549  0.448934375317496
X092 y7 5.77420047603891    -1.17329563768878   0.445047009024658   1.2028311977189 -2.09516788500395   -0.503860560134249  -0.440837437962766  1.85501315350221    -0.834761299098988  0.456883238407818   0.343706388464323
X105 y7 2.90005648557469    1.7193255259151 -1.21587523209629   -0.427177101578488  -0.627556210423172  -3.99113235385036   1.25742312331302    0.040912848245426   -0.785061544873709  0.493921235479174   0.602263270046018
X028 y7 -5.25213145411614   -1.96999472344059   1.42004682865149    -0.91455749550075   0.53138842064767    0.372108093120868   0.999674017662924   0.983440963089232   -0.45271465928228   1.52238785156272    0.672605306141995
X102 y7 -0.719752186559132  8.18956111960742    2.67845648218982    -2.71471106207068   1.42202429189887    -0.524542225331085  0.447062271900674   0.686175123124667   -1.29836166579492   -0.308340551448655  0.719861271366769
X031 y7 -6.16292963856133   4.85060509570318    4.2126847620166 -2.43553872291154   -0.43435465583943   1.37553276359068    -0.579643934018511  1.17488164948438    1.32392129023095    2.71520764572902    0.718541909152817
X053 y7 -6.35893956287975   -0.481951608723444  4.49223165394607    -0.170823560932413  1.07820528949514    1.90426407261065    1.6976781544118 1.60663679082296    0.377536827292087   -4.32712770127625E-02   0.694829758520922
X026 y7 -9.126960905357 1.08725723261223    -0.573951041914609  1.67782607044232    0.198336623247584   -2.86953122246331   1.68852114521665    0.549962201982335   -0.380286483868369  1.01628826947139    0.759959459159294
X037 y7 1.36505270190872    0.154232922168672   3.72787626189391    -3.58555329515882   -0.258287182557876  3.77695923237513    2.06363274503012    -7.44424212333302E-02   -0.243026580519433  0.754189664133906   0.570798239999777
X015 y7 4.43675650235116    0.125831659587608   -1.63660536215786   0.704457166310484   -0.485788420367662  -1.23623362303915   -2.94185073254018   0.371005042652702   0.390480922397501   -0.751322935004845  0.566289988658306
X115 y7 9.70789576557706    2.15415360808665    -0.774767736625052  -2.02622786105656   -6.83272897932898E-03   -1.25979936594413   -0.619358064016897  1.48545525633581    1.23881666328091    -0.473892068691094  0.15763059917753
X084 y7 -5.05915610597868   1.28231684653798    -3.16813452113816   3.81398978942311E-02    -0.26056658322319   -0.607570108068939  -2.26895660622817   -0.280121103992718  1.1581557206668 0.70719181665203    0.758975946511367
X089 y7 -7.2321169776611    -3.45940607493965   -0.896630636558091  -0.624289080870102  3.37973009314874    -0.660949568507029  -1.28382758970168   1.61495582985708    -0.236546232606131  0.743689477887689   0.684182777346267
X070 y7 -1.72139117485005   -3.59264407072097   -1.12987545996396   2.78410751589509    1.18420494996691    -1.66990029841491   -1.31210755888876   -1.64519705582319   -1.17749982138072   -0.789854195043032  0.596281826903686
X121 y7 2.94579461165834    -1.53944682079578   -2.18511806792739   8.52317889470527E-02    0.773374097566854   0.908527198741026   -1.06436773077894   -0.106908974206049  3.77291796895366    -1.43914893232295   0.485354296934085
X040 y7 -3.71657538478269   2.9915033382211 -2.37358232145532   -1.74140110557328   0.879562060220561   -0.186006811914471  -3.03422383938489   7.09245387496289E-02    1.69266042104312    9.11003346977334E-02    0.664458698220819
X050 y7 0.475793940378902   0.532527233132171   1.09069683661794    -0.273929007898906  3.56606669789417    -5.32586521203006E-03   -2.06199829748345   0.916218309187297   -0.511609127771478  -0.829866398097593  0.586056512557182
X048 y7 -8.76908227910536   -2.58866919749497   -3.47359591232635   2.39032746268097    -0.435285448011596  -0.611678098455047  -0.387857745557412  7.5630308277455E-04 2.82150278577457    -1.05165750982245   0.554033843744992
X024 y7 -13.6186193549591   4.53794647377105    -1.1640424147117    0.853074420261857   3.00276105179634    2.2621696100755 1.54863273082483    1.46874484773545    0.642079320801509   -1.17894488952068   0.740868185192386
X029 y7 -3.93494816396007   6.84260030634352    4.84132536930456    -0.703242523684553  1.27001300421836    2.88402236252198    -1.41616084473683   0.18558627899548    -0.255520180512287  -0.11825893347637   0.656308969574663
X058 y7 -0.533953659527016  -3.59419670524299   -6.21847389392613E-02   3.12248184904771    -0.970549462282703  1.73600706110163    0.716076363110235   -2.03157502654338   -0.185983613882669  -1.13023192445807   0.544695504576695
X111 y7 -2.42539983228739   -5.41900054828541   1.17653088275733    -0.590160767698779  1.72503186163854    2.01686477861317    1.37795156556941    9.42444506993529E-02    1.63959299252878    -1.18845953874891   0.360989555160435
X100 y7 -5.88798347467999   -2.25570846537281   -2.27257310819712   2.25978831635043    -1.87020337507398   -0.349201035751804  0.244248986726665   -1.55416432151377   -0.903176091406223  0.439194502863558   0.648524886958248
X016 y7 2.22481961161996    -0.495782079794814  -0.936901673888438  3.46441249413796    -0.299713046858658  1.35032843918957E-02    -0.446639771849217  -2.34040678094425   0.413652502415691   0.352777159566364   0.643054677259255
X032 y7 -1.7152551073983    -0.234688383679724  1.26286864412284    -1.86322100220324   1.63507032962317    1.94284519738854    -0.367428571302029  -1.62696732853019   -1.20990245118527   1.05664015163771    0.583917996518399
X025 y7 -8.28369499974165   0.795185031920821   3.36606773135854    1.30335423715504    1.31846438526884    1.92128352973198    0.119247908530787   1.98937148422595    0.98667359874469    0.742089792025553   0.638259141472873
X065 y7 5.05828924636548    0.908758251845031   3.62690379671223    0.164838132208794   0.221854014751618   0.643668333644285   -0.382838756002362  0.676441843706409   1.7103682845196 0.853707219236365   0.32293905373328
X036 y7 -3.34295132184417   -4.41772971639855   -2.42496546304556   1.43539718446744    0.24081427494968    1.27215110035618    1.57122124745865    -9.07926785309553E-02   -0.500599334998908  0.3526156338948 0.482638053394283
X022 y7 10.4159916313874    0.363807261537086   2.21572539303282    2.39473567103644    -8.21247405890959E-02   0.121713032667271   -0.172976208049391  0.399694378320414   0.813322631516825   -1.34474965111697   0.177545698165701
X062 y7 4.97202858939999    -0.405994077513881  -4.7355765771677    0.371412533877246   -1.33579080581324   0.341680698379248   0.373782667456135   -1.36795891418662   0.201812628898999   -0.509864200796645  0.412265678072685
X046 y7 -3.2070611126168    1.9658134244394 -4.96699587273018   2.58507257721916    0.677391573876038   -0.794142281429037  1.76204196290053    -1.24528928618193   1.30435133802695    -0.348545696553259  0.731839649682648
X120 y7 5.03891337622233    -4.37958479507978   -3.75958410005882   -2.41737564483433   -2.65093584245105   6.38678877360447E-02    -3.76307051597622   -0.306951328262414  5.06385240379942E-02    1.80418407493883    0.352064145163263
X010 y7 -2.19534888488862   -5.71552997812972   -2.54798524356995   -5.46532854493649   2.0349871802497 1.86977495475099    1.0102785949972 -0.648213341255023  1.19509421829095    -0.474244031626319  0.255199305410578
X087 y7 -2.87440758130519   -1.56614425216859   -0.214685578900002  2.61868788902779    -0.549949439830095  1.99035737918547    -0.307185247663762  -2.17612427977269   -1.07670874867566   -0.302842450831714  0.639111357004194
X066 y7 -2.40603983747625   7.318117319931  -8.68510001944344E-02   -0.397226292933707  0.152339697912322   2.09248669870129    -0.26977707763143   -1.62178289672658   0.848545563744191   -1.38664444002672   0.700043422915476
X073 y7 -6.83154542538091   -3.92242822624881   -1.30735562714719   -3.13070017851774   -1.07012896190267   1.61291603617646    -0.447759632130991  -0.214244993352655  -0.585066675773694  -0.565011919418235  0.596791110310168
X094 y7 13.4618107876782    -3.94822016837025   5.05159247878004    1.97556287390166    3.73953089973484    -0.646746115568399  0.965160056105702   0.676367876074884   2.28436942504023    0.537227025430724   0
X023 y7 -4.8775402107091    -4.12501756265517   -2.27881222191454   -1.86202209268234   -0.502096138361181  1.7091075290976 -0.377341826579625  -0.361068200236776  -1.04929174692168   -1.83743917666367   0.441999945490185
X035 y7 -0.38702071945627   -0.037845940584369  0.253390462384328   2.45809313523985    1.3912538136    0.396616621403596   -0.652711117741324  -2.02482113921603   0.735140206294811   0.114276526211146   0.694123571039207
X052 y7 0.437961232041306   -0.525296154559809  4.12777505698584    0.928000030902302   1.50933898151927    0.536752855000547   -1.35328387942828   -3.45343510641525E-02   0.342800240728446   -1.36024230292128   0.503553558040187
X090 y7 5.8759449122214 3.27805104437807    -4.07645642306576   1.31539148541223    -0.266021698028939  -0.695419677613201  0.889055163828194   2.32893377555772E-02    1.20358476072801    1.29387076400352    0.419446528984698
X006 y7 7.36769839988443    1.40189322331541    -1.51699477009677   -2.11631615238169   2.44537900196125    0.281302344948175   1.04396856774743    -1.21825370453226   9.62767430413176E-02    -4.34274219927117E-02   0.402603441521971
X012 y7 -6.3214287141386    1.75365412184414    -0.623570056714132  2.62771487690855    -0.755944893491157  1.11946631740662    0.377908536769657   -0.375206246075601  -0.158315945250462  1.60467668360538    0.723807672288481
X108 y7 6.5459572482018 -0.792755406433753  -1.95714624076072   -9.50434640321064E-02   -5.30063096031214E-02   -0.38580608118101   -4.11031240875448E-02   0.279569541388208   1.1895509027746 -0.255145074826884  0.113352115264063
X072 y7 5.31181586621353    -1.76062594156829   0.978811817696108   0.805416187256626   -0.101536944556724  0.733573760323421   -0.685405370241293  -0.807975536080938  -0.63928589312435   -0.776631166896858  0.342870418080616
X011 y7 4.47733296227365    4.41612174858369E-02    1.04199108489624    0.507709900129822   -1.49702171420879   0.562924762828593   -2.09921985421718   -1.10136884350998   -1.14148162529434   -1.87562935354984   0.541577519851939
X093 y7 9.24685096556148    2.0100787128997 1.681436650306  3.03348652975405    -1.08811689969173   -1.13694466537189   -1.27936614497546   0.348021793918123   -0.429656061648232  -2.27609340681847   0.310623710348242
X082 y7 0.6510182495572 -3.82029305675754   6.14830660856756    2.39568264624447    1.51859911006723    3.43748132085452    2.98300921884542E-03    1.02046197057199E-03    -3.25206786681409E-02   1.37307432097495    0.512226253331402
1
The problem comes with this line. validationData = subjects$ID[subjects$ID %in% trainingData] .. what is subjects? It should be validationData = setdiff(rownames(validInd),trainingData)StupidWolf
I am voting to close this because it looks like a typo to meStupidWolf
Thank you for answering. subject is a dataframe that validInd is derived from. It creates two character vectors that I choose the rows in validInd with. It's not where the problem is. The error arrives only after using predict.glmnetMayan
if your prediction dataset is wrong, ie this would be total rubbish data.matrix(validInd[validationData,-11]) then it throws an error on the predict. can you try what I did above and see whether you can predictStupidWolf
or you need to provide subjectID, otherwise no one can reproduce your error hereStupidWolf

1 Answers

0
votes

Ok thanks for providing the data. It's a bit more clear now. The issue is that you are using a cv.glmnet object, no a glmnet object, if you do:

class(LASSO)
[1] "cv.glmnet"

So to predict, you need to can do:

predictLASSO = predict(object = LASSO, s = "lambda.min", 
               newx = data.matrix(validInd[validationData,-11]))

When you are doing that, the function invoked is in fact glmnet:::predict.cv.glmnet and you can try that too:

pred2 = glmnet:::predict.cv.glmnet(LASSO,s="lambda.min",data.matrix(validInd[validationData,-11]))

table(pred2==predictLASSO)

TRUE 
  32