Before using parfor it is recommended to read the guidelines related to decide when to use parfor. Specially this:
Generally, if you want to make code run faster, first try to vectorize it.
Here vectorization can be used effectively to compute indices of the nonzero elements. Those indices are used in function sparse. For it you need to define one of i or j to be a column vector and another a row vector. Implicit expansion takes effect and indices are computed.
I = 300;
J = 300;
i = (1:I-2).';
j = 1:J-2;
ij1 = i*J+j+1;
ij2 = i*J+j+1 + I*J;
D1 = sparse(ij1, ij1, 2, 2*I*J, 2*I*J) + sparse(ij1, ij2, -1, 2*I*J, 2*I*J);
However for the comparison this can be a way of using parfor (not tested):
D1 = sparse (2*I*J, 2*I*J);
parfor i=1:(I-2)
for j=1:(J-2)
ij1 = i*J+j+1;
ij2 = i*J+j+1 + I*J;
D1 = D1 + sparse([ij1;ij1], [ij1;ij2], [2;-1], 2*I*J, 2*I*J) ;
end
end
Here D1 used as reduction variable.
IandJ? How long does this take to run? You can likely easily vectorize this, but I don’t think you can use parfor here. - Cris Luengospdiags. - David