After tuning a learner and using it, we can use it to make predictions through the command line
predict(Learner, newdata, predict_type="response")
But, how do we compute confidence intervals for predictions?
task <- TaskRegr$new("data", data, "y")
learner <- lrn("regr.xgboost")
preprocess <- po("scale", param_vals = list(center = TRUE, scale = TRUE))
pp <- preprocess %>>% learner
gg<- GraphLearner$new(pp)
gg$train(task)
predict(gg, newdata = pred, predict_type="reponse")
predict_type = "se"
– Lars KotthoffError: Predict type 'se' not available
. I'm usingregr.xgboost
in aGraphLearner
. – Niplrn("regr.featureless", predict_type = "se")
it shows not errors at all.lrn("regr.xgboost", predict_type = "se")
throwsError: Learner 'regr.xgboost' does not support predict type 'se'
, however. Is it just me? – Nip