There is a multi-classification problem with 27 classes.
y_predict=[0 0 0 20 26 21 21 26 ....]
y_true=[1 10 10 20 26 21 18 26 ...]
A list named "answer_vocabulary" stored the corresponding 27 words to each index. answer_vocabulary=[0 1 10 11 2 3 agriculture commercial east living north .....]
cm = confusion_matrix(y_true=y_true, y_pred=y_predict)
I'm confused about the order of the confusion matrix. It is in an ascending index order? And if I want to reorder the confusion matrix with a label sequence=[0 1 2 3 10 11 agriculture commercial living east north ...], how can I implement it?
Here is a function I have tried to plot confusion matrix.
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')