MinMaxScaler maps data between (min, max), which can change the DC offset and (consequently) polarity of a signal (but not frequency); cross-correlation responds strongly to both these traits. To illustrate, a rising sine:
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as sig
from sklearn.preprocessing import MinMaxScaler
#%%##########################################################
x = np.linspace(0, 5, 60) # [0, 0.084, 0.169, ..., 4.91, 5]
x = x.reshape(-1, 1) # (samples, features) = (60, 1)
y = x + np.sin(x) # rising sine above x-axis
y_scaled = MinMaxScaler((-1, 1)).fit_transform(y)
#%%##########################################################
plt.plot(y)
plt.plot(y_scaled)
plt.axhline(0, color='k', linestyle='--')
plt.show()
#%%#####################################
plt.plot(sig.correlate(x, y))
plt.plot(sig.correlate(x, y_scaled))
plt.show()

I did say "can"; the condition for not changing cross-correlation shape is for neither polarity nor DC offset to change between transforms - i.e. the transform can be obtained purely by scaling. E.g. sin(x)/2 -> sin(x).
I recommend chapters 6 & 7 of this textbook, which present an excellent intuitive explanation of convolution, and then cross-correlation. There's also an interactive illustration.