Cloud SQL Proxy solution
I use the cloud-sql-proxy to create a local unix socket file in the workspace
directory provided by Cloud Build.
Here are the main steps:
- Pull a
Berglas
container populating its call with the _VAR1
substitution, an environment variable I've encrypted using Berglas called CMCREDENTIALS
. You should add as many of these _VAR{n}
as you require.
- Install the cloudsqlproxy via wget.
- Run an intermediate step (tests for this build). This step uses the variables stored in the provided temporary
/workspace
directory.
- Build your image.
- Push your image.
- Using Cloud Run, deploy and include the flag
--set-environment-variables
The full cloudbuild.yaml
# basic cloudbuild.yaml
steps:
# pull the berglas container and write the secrets to temporary files
# under /workspace
- name: gcr.io/berglas/berglas
id: 'Install Berglas'
env:
- '${_VAR1}=berglas://${_BUCKET_ID_SECRETS}/${_VAR1}?destination=/workspace/${_VAR1}'
args: ["exec", "--", "/bin/sh"]
# install the cloud sql proxy
- id: 'Install Cloud SQL Proxy'
name: alpine:latest
entrypoint: sh
args:
- "-c"
- "\
wget -O /workspace/cloud_sql_proxy \
https://dl.google.com/cloudsql/cloud_sql_proxy.linux.amd64 && \
sleep 2 && \
chmod +x /workspace/cloud_sql_proxy"
waitFor: ['-']
# using the secrets from above, build and run the test suite
- name: 'python:3.8.3-slim'
id: 'Run Unit Tests'
entrypoint: '/bin/bash'
args:
- "-c"
- "\
(/workspace/cloud_sql_proxy -dir=/workspace/${_SQL_PROXY_PATH} -instances=${_INSTANCE_NAME1} & sleep 2) && \
apt-get update && apt-get install -y --no-install-recommends \
build-essential libssl-dev libffi-dev libpq-dev python3-dev wget && \
rm -rf /var/lib/apt/lists/* && \
export ${_VAR1}=$(cat /workspace/${_VAR1}) && \
export INSTANCE_NAME1=${_INSTANCE_NAME1} && \
export SQL_PROXY_PATH=/workspace/${_SQL_PROXY_PATH} && \
pip install -r dev-requirements.txt && \
pip install -r requirements.txt && \
python -m pytest -v && \
rm -rf /workspace/${_SQL_PROXY_PATH} && \
echo 'Removed Cloud SQL Proxy'"
waitFor: ['Install Cloud SQL Proxy', 'Install Berglas']
dir: '${_APP_DIR}'
# Using the application/Dockerfile build instructions, build the app image
- name: 'gcr.io/cloud-builders/docker'
id: 'Build Application Image'
args: ['build',
'-t',
'gcr.io/$PROJECT_ID/${_IMAGE_NAME}',
'.',
]
dir: '${_APP_DIR}'
# Push the application image
- name: 'gcr.io/cloud-builders/docker'
id: 'Push Application Image'
args: ['push',
'gcr.io/$PROJECT_ID/${_IMAGE_NAME}',
]
# Deploy the application image to Cloud Run
# populating secrets via Berglas exec ENTRYPOINT for gunicorn
- name: 'gcr.io/cloud-builders/gcloud'
id: 'Deploy Application Image'
args: ['beta',
'run',
'deploy',
'${_IMAGE_NAME}',
'--image',
'gcr.io/$PROJECT_ID/${_IMAGE_NAME}',
'--region',
'us-central1',
'--platform',
'managed',
'--quiet',
'--add-cloudsql-instances',
'${_INSTANCE_NAME1}',
'--set-env-vars',
'SQL_PROXY_PATH=/${_SQL_PROXY_PATH},INSTANCE_NAME1=${_INSTANCE_NAME1},${_VAR1}=berglas://${_BUCKET_ID_SECRETS}/${_VAR1}',
'--allow-unauthenticated',
'--memory',
'512Mi'
]
# Use the defaults below which can be changed at the command line
substitutions:
_IMAGE_NAME: your-image-name
_BUCKET_ID_SECRETS: your-bucket-for-berglas-secrets
_INSTANCE_NAME1: project-name:location:dbname
_SQL_PROXY_PATH: cloudsql
_VAR1: CMCREDENTIALS
# The images we'll push here
images: [
'gcr.io/$PROJECT_ID/${_IMAGE_NAME}'
]
Dockerfile
utilized
The below builds a Python app from source contained inside the directory <myrepo>/application
. This dockerfile sits under application/Dockerfile
.
# Use the official lightweight Python image.
# https://hub.docker.com/_/python
FROM python:3.8.3-slim
# Add build arguments
# Copy local code to the container image.
ENV APP_HOME /application
WORKDIR $APP_HOME
# Install production dependencies.
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential \
libpq-dev \
python3-dev \
libssl-dev \
libffi-dev \
&& rm -rf /var/lib/apt/lists/*
# Copy the application source
COPY . ./
# Install Python dependencies
RUN pip install -r requirements.txt --no-cache-dir
# Grab Berglas from Google Cloud Registry
COPY --from=gcr.io/berglas/berglas:latest /bin/berglas /bin/berglas
# Run the web service on container startup. Here we use the gunicorn
# webserver, with one worker process and 8 threads.
# For environments with multiple CPU cores, increase the number of workers
# to be equal to the cores available.
ENTRYPOINT exec /bin/berglas exec -- gunicorn --bind :$PORT --workers 1 --threads 8 app:app
Hope this helps someone, though possibly too specific (Python + Berglas) for the original OP.
cloudbuild.yaml
if you have one? – Jason R Stevens CFA