Context:
I do have a graph with about 2000 vertices, and 6000 edges, this over time might grow to 10000 vertices and 100000 edges. Currently I am upserting the new vertices using the following traversal query:
Upserting Vertices & Edges
queryVertex = "g.V().has(label, name, foo).fold().coalesce(
unfold(), addV(label).property(name, foo).property(model, 2)
).property(model, 2)"
The intent here is to look for vertex, named foo, and if found update its model
property, otherwise create a new vertex and set the model
property. this is issued twice: once for the source vertex and then for the target vertex.
Once the two related vertices are created, another query is issued to create the edge between them:
queryEdge = "g.V('id_of_source_vertex').coalesce(
outE(edge_label).filter(inV().hasId('id_of_target_vertex')),
addE(edge_label).to(V('id_of_target_vertex'))
).property(model, 2)"
here, if there is an edge between the two vertices, the model
property on edge is updated, otherwise it creates the edge between them.
And the pseudocode that does this, is something as follows:
for each edge in the list of new edges:
//upsert source and target vertices:
execute queryVertex for edge.source
execute queryVertex for edge.target
// upsert edge:
execute queryEdge
This works, but it is highly inefficient; for example for the mentioned graph size it takes several minutes to finish, and with some in-app concurrency, it reduces the time only by couple of minutes. Surely, there must be a more efficient way of doing this for such a small graph size.
Question
* How can I make these upserts faster?