0
votes

I am a beginner trying to evaluate this video object segmentation network paper.

When following the instructions on https://github.com/seoungwugoh/STM

It says the requirements are as follows:-

python 3.6
pytorch 1.0.1.post2
numpy, opencv, pillow

I couldn't get this pytorch version to install, so I installed the conda-forge pytorch version 1.5.

and I run this command in either Windows 10 or Ubuntu 16.04 using Anaconda

(STMVOS) oneworld@oneworld:~/Documents/VideoObjectSegmentation/STMVOS$ python eval_DAVIS.py -g '1' -s val -y 16 -D ../DAVISSemiSupervisedTrainVal480

after doing pip install matplotlib, and pip install tqdm ...

I get the following error message:-

Space-time Memory Networks: initialized. STM : Testing on DAVIS Loading weights: STM_weights.pth Traceback (most recent call last):

File "eval_DAVIS.py", line 111, in model.load_state_dict(torch.load(pth_path))

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args)

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 773, in _legacy_load result = unpickler.load()

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 729, in persistent_load

deserialized_objects[root_key] = restore_location(obj, location)

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 178, in default_restore_location result = fn(storage, location)

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 154, in _cuda_deserialize device = validate_cuda_device(location)

File "/home/oneworld/anaconda3/envs/STMVOS/lib/python3.8/site-packages/torch/serialization.py", line 138, in validate_cuda_device raise RuntimeError('Attempting to deserialize object on a CUDA '

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU

My Graphics Card Driver, and System and Packages are as follows:-

(STMVOS) oneworld@oneworld:~/Documents/VideoObjectSegmentation/STMVOS$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.64.00    Driver Version: 440.64.00    CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1070    Off  | 00000000:01:00.0  On |                  N/A |
| 26%   34C    P8    10W / 151W |    392MiB /  8118MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1247      G   /usr/lib/xorg/Xorg                           229MiB |
|    0      2239      G   compiz                                       126MiB |
|    0      9385      G   /usr/lib/firefox/firefox                       2MiB |
|    0     11686      G   /proc/self/exe                                30MiB |
+-----------------------------------------------------------------------------+

I also tried this

(STMVOS) oneworld@oneworld:~/Documents/VideoObjectSegmentation/STMVOS$ python -c 'import torch; print(torch.rand(2,3).cuda())'

tensor([[0.9178, 0.8239, 0.4761], [0.9429, 0.8877, 0.0097]], device='cuda:0')

Which shows that cuda is working here

(STMVOS) oneworld@oneworld:~/Documents/VideoObjectSegmentation/STMVOS$ conda info
    active environment : STMVOS
    active env location : /home/oneworld/anaconda3/envs/STMVOS
            shell level : 1
       user config file : /home/oneworld/.condarc
 populated config files : 
          conda version : 4.8.2
    conda-build version : 3.18.11
         python version : 3.7.6.final.0
       virtual packages : __cuda=10.2
                          __glibc=2.23
       base environment : /home/oneworld/anaconda3  (writable)
           channel URLs : https://repo.anaconda.com/pkgs/main/linux-64
                          https://repo.anaconda.com/pkgs/main/noarch
                          https://repo.anaconda.com/pkgs/r/linux-64
                          https://repo.anaconda.com/pkgs/r/noarch
          package cache : /home/oneworld/anaconda3/pkgs
                          /home/oneworld/.conda/pkgs
       envs directories : /home/oneworld/anaconda3/envs
                          /home/oneworld/.conda/envs
               platform : linux-64
             user-agent : conda/4.8.2 requests/2.22.0 CPython/3.7.6 Linux/4.4.0-179-generic ubuntu/16.04.6 glibc/2.23
                UID:GID : 1000:1000
             netrc file : None
           offline mode : False
(STMVOS) oneworld@oneworld:~/Documents/VideoObjectSegmentation/STMVOS$ conda list

packages in environment at /home/oneworld/anaconda3/envs/STMVOS:

Name Version Build Channel _libgcc_mutex 0.1 main
blas 1.0 mkl
bzip2 1.0.8 h516909a_2 conda-forge ca-certificates 2020.4.5.1 hecc5488_0 conda-forge cairo 1.16.0 hcf35c78_1003 conda-forge certifi 2020.4.5.1 py38_0
cudatoolkit 10.2.89 hfd86e86_1
cycler 0.10.0 pypi_0 pypi dbus 1.13.6 he372182_0 conda-forge expat 2.2.9 he1b5a44_2 conda-forge ffmpeg 4.2.3 h167e202_0 conda-forge fontconfig 2.13.1 h86ecdb6_1001 conda-forge freetype 2.9.1 h8a8886c_1
gettext 0.19.8.1 hc5be6a0_1002 conda-forge giflib 5.2.1 h516909a_2 conda-forge glib 2.64.3 h6f030ca_0 conda-forge gmp 6.2.0 he1b5a44_2 conda-forge gnutls 3.6.5 hd3a4fd2_1002 conda-forge graphite2 1.3.13 he1b5a44_1001 conda-forge gst-plugins-base 1.14.5 h0935bb2_2 conda-forge gstreamer 1.14.5 h36ae1b5_2 conda-forge harfbuzz 2.4.0 h9f30f68_3 conda-forge hdf5 1.10.6 nompi_h3c11f04_100 conda-forge icu 64.2 he1b5a44_1 conda-forge intel-openmp 2020.1 217
jasper 1.900.1 h07fcdf6_1006 conda-forge jpeg 9c h14c3975_1001 conda-forge kiwisolver 1.2.0 pypi_0 pypi lame 3.100 h14c3975_1001 conda-forge ld_impl_linux-64 2.33.1 h53a641e_7
libblas 3.8.0 15_mkl conda-forge libcblas 3.8.0 15_mkl conda-forge libclang 9.0.1 default_hde54327_0 conda-forge libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 he1b5a44_1007 conda-forge libgcc-ng 9.1.0 hdf63c60_0
libgfortran-ng 7.3.0 hdf63c60_0
libiconv 1.15 h516909a_1006 conda-forge liblapack 3.8.0 15_mkl conda-forge liblapacke 3.8.0 15_mkl conda-forge libllvm9 9.0.1 he513fc3_1 conda-forge libopencv 4.2.0 py38_6 conda-forge libpng 1.6.37 hbc83047_0
libstdcxx-ng 9.1.0 hdf63c60_0
libtiff 4.1.0 h2733197_0
libuuid 2.32.1 h14c3975_1000 conda-forge libwebp 1.0.2 h56121f0_5 conda-forge libxcb 1.13 h14c3975_1002 conda-forge libxkbcommon 0.10.0 he1b5a44_0 conda-forge libxml2 2.9.10 hee79883_0 conda-forge matplotlib 3.2.1 pypi_0 pypi mkl 2020.1 217
mkl-service 2.3.0 py38he904b0f_0
mkl_fft 1.0.15 py38ha843d7b_0
mkl_random 1.1.1 py38h0573a6f_0
ncurses 6.2 he6710b0_1
nettle 3.4.1 h1bed415_1002 conda-forge ninja 1.9.0 py38hfd86e86_0
nspr 4.25 he1b5a44_0 conda-forge nss 3.47 he751ad9_0 conda-forge numpy 1.18.1 py38h4f9e942_0
numpy-base 1.18.1 py38hde5b4d6_1
olefile 0.46 py_0
opencv 4.2.0 py38_6 conda-forge openh264 2.1.1 h8b12597_0 conda-forge openssl 1.1.1g h516909a_0 conda-forge pcre 8.44 he1b5a44_0 conda-forge pillow 7.1.2 py38hb39fc2d_0
pip 20.0.2 py38_3
pixman 0.38.0 h516909a_1003 conda-forge pthread-stubs 0.4 h14c3975_1001 conda-forge py-opencv 4.2.0 py38h23f93f0_6 conda-forge pyparsing 2.4.7 pypi_0 pypi python 3.8.1 h0371630_1
python-dateutil 2.8.1 pypi_0 pypi python_abi 3.8 1_cp38 conda-forge pytorch 1.5.0 py3.8_cuda10.2.89_cudnn7.6.5_0 pytorch qt 5.12.5 hd8c4c69_1 conda-forge readline 7.0 h7b6447c_5
setuptools 46.4.0 py38_0
six 1.14.0 py38_0
sqlite 3.31.1 h62c20be_1
tk 8.6.8 hbc83047_0
torchvision 0.6.0 py38_cu102 pytorch tqdm 4.46.0 pypi_0 pypi wheel 0.34.2 py38_0
x264 1!152.20180806 h14c3975_0 conda-forge xorg-kbproto 1.0.7 h14c3975_1002 conda-forge xorg-libice 1.0.10 h516909a_0 conda-forge xorg-libsm 1.2.3 h84519dc_1000 conda-forge xorg-libx11 1.6.9 h516909a_0 conda-forge xorg-libxau 1.0.9 h14c3975_0 conda-forge xorg-libxdmcp 1.1.3 h516909a_0 conda-forge xorg-libxext 1.3.4 h516909a_0 conda-forge xorg-libxrender 0.9.10 h516909a_1002 conda-forge xorg-renderproto 0.11.1 h14c3975_1002 conda-forge xorg-xextproto 7.3.0 h14c3975_1002 conda-forge xorg-xproto 7.0.31 h14c3975_1007 conda-forge xz 5.2.5 h7b6447c_0
zlib 1.2.11 h7b6447c_3
zstd 1.3.7 h0b5b093_0

The code it gets stuck on in eval_DAVIS.py is as follows:-

print('Loading weights:', pth_path)
model.load_state_dict(torch.load(pth_path))

I am using Ubuntu 16.04, however I tried a similar setup in windows 10 and received the same error messages.

Any help much appreciated.

Kind regards

OneWorld

4
This is not a CUDA programming related question. Please refrain from re-adding the CUDA tag to it. - talonmies

4 Answers

0
votes

I just created README.md file for this project to run successfully, it's here: Install PyTorch via pip to run STM Paper. I have tested in Windows 10 with Cuda version 10.1. Just follow this README.md step by step and you should be good to go.

Your PyTorch installation command could be different based on your system configuration, get your installation command as shown in the image below:

Pytorch installation via pip

Your requirements.txt file should look like this:

requirements.txt file

NOTE: I haven't done anything with [path/to/DAVIS] or something. You might be able to run the script eval_DAVIS.py without installation error, and that all that I tested. You should be run in Ubuntu as well, just use an appropriate command from README.md.

Happy Coding!

0
votes

I changed my python version from 3.8. to 3.6, using conda-forge for install, and for reinstall of matplotlib.

I ran the code eval_DAVIS.py in debug mode within MSVSCode instead of from the command line commenting out the args, as follows:-

# def get_arguments():
#     parser = argparse.ArgumentParser(description="SST")
#     parser.add_argument("-g", type=str, help="0; 0,1; 0,3; etc", required=True)
#     parser.add_argument("-s", type=str, help="set", required=True)
#     parser.add_argument("-y", type=int, help="year", required=True)
#     parser.add_argument("-viz", help="Save visualization", action="store_true")
#     parser.add_argument("-D", type=str, help="path to data",default='/local/DATA')
#     return parser.parse_args()

# args = get_arguments()

# GPU = args.g
# YEAR = args.y
# SET = args.s
# VIZ = args.viz
# DATA_ROOT = args.D

GPU = '0'
YEAR = '17'
SET = 'val'
VIZ = 'store_true'
DATA_ROOT = '..\\DAVIS2017SemiSupervisedTrainVal480'

Above the line

for seq, V in enumerate(Testloader):

I wrote this to test whether there was a cuda is available problem.

if torch.cuda.is_available() == False:
    print("********** CUDA is NOT available just before line of error **********")
else:
    print("********** CUDA is available, and working fine just before line of error ***********")

this produces the following terminal log

Space-time Memory Networks: initialized.
STM : Testing on DAVIS
using Cuda devices, num: 1
--- Produce mask overaid video outputs. Evaluation will run slow.
--- Require FFMPEG for encoding, Check folder ./viz
Loading weights: STM_weights.pth
Start Testing: STM_DAVIS_17val
********** CUDA is available, and working fine just before line of error ***********
Space-time Memory Networks: initialized.
STM : Testing on DAVIS
using Cuda devices, num: 1
--- Produce mask overaid video outputs. Evaluation will run slow.
--- Require FFMPEG for encoding, Check folder ./viz
Space-time Memory Networks: initialized.
STM : Testing on DAVIS
using Cuda devices, num: 1
--- Produce mask overaid video outputs. Evaluation will run slow.
--- Require FFMPEG for encoding, Check folder ./viz
Loading weights: STM_weights.pth
Loading weights: STM_weights.pth
Start Testing: STM_DAVIS_17val
********** CUDA is available, and working fine just before line of error ***********
Start Testing: STM_DAVIS_17val
********** CUDA is available, and working fine just before line of error ***********

it gets to this line of code

for seq, V in enumerate(Testloader):

and provides the following error message:-

Exception has occurred: RuntimeError

        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\eval_DAVIS.py", line 127, in <module>
    for seq, V in enumerate(Testloader):
  File "<string>", line 1, in <module>

So, this got rid of the CUDA error, without needing to switch the code to use CPU.

However, this still produces the freeze_support() error...

and the logs identify a dataloader error:-

Traceback (most recent call last):
  File "eval_DAVIS.py", line 127, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 345, in __next__
    data = self._next_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 841, in _next_data
    idx, data = self._get_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 798, in _get_data
    success, data = self._try_get_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 774, in _try_get_data
    raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str))
RuntimeError: DataLoader worker (pid(s) 15916, 1232) exited unexpectedly

0
votes

So because of the error, and recommendation that Python threw up.

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU

I tried editing the code on line 111 in eval_DAVIS.py from this

model.load_state_dict(torch.load(pth_path))

to this

model.load_state_dict(torch.load(pth_path, map_location=torch.device('cpu')))

and then reran the code.

(STMVOS) C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS>python eval_DAVIS.py -g '0' -s val -y 17 -D C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\DAVIS2017SemiSupervisedTrainVal480

which gets through the weights loading.

Space-Time Memory Networks: initialized.
STM : Testing on DAVIS
Loading weights: STM_weights.pth
Start Testing: STM_DAVIS_17val
Space-Time Memory Networks: initialized.
STM : Testing on DAVIS
Space-Time Memory Networks: initialized.
STM : Testing on DAVIS
Loading weights: STM_weights.pth
Loading weights: STM_weights.pth

However, when it starts testing, it has the following error:-

Start Testing: STM_DAVIS_17val
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 125, in _main
    prepare(preparation_data)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 236, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
    main_content = runpy.run_path(main_path,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 265, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 279, in __iter__
    return _MultiProcessingDataLoaderIter(self)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 719, in __init__
    w.start()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\process.py", line 121, in start
    self._popen = self._Popen(self)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\context.py", line 326, in _Popen
    return Popen(process_obj)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
    raise RunTimeError('''
RunTimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
Start Testing: STM_DAVIS_17val
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 116, in spawn_main
    exitcode = _main(fd, parent_sentinel)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 125, in _main
    prepare(preparation_data)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 236, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
    main_content = runpy.run_path(main_path,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 265, in run_path
    return _run_module_code(code, init_globals, run_name,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 97, in _run_module_code
    _run_code(code, mod_globals, init_globals,
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 279, in __iter__
    return _MultiProcessingDataLoaderIter(self)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 719, in __init__
    w.start()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\process.py", line 121, in start
    self._popen = self._Popen(self)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\context.py", line 224, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\context.py", line 326, in _Popen
    return Popen(process_obj)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
    raise RunTimeError('''
RunTimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
Traceback (most recent call last):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 761, in _try_get_data
    data = self._data_queue.get(OneWorldeout=OneWorldeout)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\multiprocessing\queues.py", line 108, in get
    raise Empty
_queue.Empty

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 345, in __next__
    data = self._next_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 841, in _next_data
    idx, data = self._get_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 808, in _get_data
    success, data = self._try_get_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 774, in _try_get_data
    raise RunTimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str))
RunTimeError: DataLoader worker (pid(s) 2412, 15788) exited unexpectedly

This was using Anaconda, so the error below is just using windows command console, and pip

(env) C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS>python eval_DAVIS.py -g '0' -s val -y 17 -D C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\DAVIS2017SemiSupervisedTrainVal480
Space-OneWorlde Memory Networks: initialized.
STM : Testing on DAVIS
Loading weights: STM_weights.pth
Start Testing: STM_DAVIS_17val
Space-OneWorlde Memory Networks: initialized.
STM : Testing on DAVIS
Space-OneWorlde Memory Networks: initialized.
STM : Testing on DAVIS
Loading weights: STM_weights.pth
Loading weights: STM_weights.pth
Start Testing: STM_DAVIS_17val
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 105, in spawn_main
    exitcode = _main(fd)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 114, in _main
    prepare(preparation_data)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 225, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
    run_name="__mp_main__")
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 263, in run_path
    pkg_name=pkg_name, script_name=fname)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 96, in _run_module_code
    mod_name, mod_spec, pkg_name, script_name)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 279, in __iter__
    return _MultiProcessingDataLoaderIter(self)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 719, in __init__
    w.start()
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\process.py", line 112, in start
    self._popen = self._Popen(self)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 223, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 322, in _Popen
    return Popen(process_obj)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\popen_spawn_win32.py", line 46, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 143, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 136, in _check_not_importing_main
    is not going to be frozen to produce an executable.''')
RunTimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
Start Testing: STM_DAVIS_17val
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 105, in spawn_main
    exitcode = _main(fd)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 114, in _main
    prepare(preparation_data)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 225, in prepare
    _fixup_main_from_path(data['init_main_from_path'])
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
    run_name="__mp_main__")
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 263, in run_path
    pkg_name=pkg_name, script_name=fname)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 96, in _run_module_code
    mod_name, mod_spec, pkg_name, script_name)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 279, in __iter__
    return _MultiProcessingDataLoaderIter(self)
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 719, in __init__
    w.start()
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\process.py", line 112, in start
    self._popen = self._Popen(self)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 223, in _Popen
    return _default_context.get_context().Process._Popen(process_obj)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\context.py", line 322, in _Popen
    return Popen(process_obj)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\popen_spawn_win32.py", line 46, in __init__
    prep_data = spawn.get_preparation_data(process_obj._name)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 143, in get_preparation_data
    _check_not_importing_main()
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\spawn.py", line 136, in _check_not_importing_main
    is not going to be frozen to produce an executable.''')
RunTimeError:
        An attempt has been made to start a new process before the
        current process has finished its bootstrapping phase.

        This probably means that you are not using fork to start your
        child processes and you have forgotten to use the proper idiom
        in the main module:

            if __name__ == '__main__':
                freeze_support()
                ...

        The "freeze_support()" line can be omitted if the program
        is not going to be frozen to produce an executable.
Traceback (most recent call last):
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 761, in _try_get_data
    data = self._data_queue.get(Timeout=Timeout)
  File "C:\Users\OneWorld\AppData\Local\Programs\Python\Python37\lib\multiprocessing\queues.py", line 105, in get
    raise Empty
_queue.Empty

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "eval_DAVIS.py", line 117, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 345, in __next__
    data = self._next_data()
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 841, in _next_data
    idx, data = self._get_data()
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 808, in _get_data
    success, data = self._try_get_data()
  File "C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS\env\lib\site-packages\torch\utils\data\dataloader.py", line 774, in _try_get_data
    raise RunOneWorldeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str))
RunTimeError: DataLoader worker (pid(s) 11448, 16644) exited unexpectedly

I also put this code in a small file called CUDATest.py to test that torch would do a simple matrix multiplication function.

# testing CUDA
import torch
device = torch.cuda.current_device()

n = 10
# 1D inputs, same as torch.dot
a = torch.rand(n).to(device)
b = torch.rand(n).to(device)
result = torch.matmul(a, b) # torch.Size([])

print("matmul result = ", result)

I ran the code as follows:-

(env)C:\Users\OneWorld\Documents\DeepLearning\VideoObjectSegmentation\STMVOS>python CUDATest.py

The result was as follows:-

matmul result =  tensor(2.4603, device='cuda:0')

This suggests that my CUDA and Pytorch is working fine.

0
votes

because of the Python error suggestion

if __name__ == '__main__':
    freeze_support()

I added this line

if __name__ == '__main__':

above the line

for seq, V in enumerate(Testloader):

and indented that line and everything else below.

It then worked as far as to the end of [bike packing]

However requested a scipy install before [black swan]

So I did conda install scipy

and reran, and it started to go through the rest [bmx-trees], [breakdance] etc.

The resulting eval_DAVIS.py file looked like this...

from __future__ import division
import torch
from torch.autograd import Variable
from torch.utils import data

import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.utils.model_zoo as model_zoo
from torchvision import models

# general libs
import cv2
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import time
import tqdm
import os
import argparse
import copy


### My libs
from dataset import DAVIS_MO_Test
from model import STM


torch.set_grad_enabled(False) # Volatile

# def get_arguments():
#     parser = argparse.ArgumentParser(description="SST")
#     parser.add_argument("-g", type=str, help="0; 0,1; 0,3; etc", required=True)
#     parser.add_argument("-s", type=str, help="set", required=True)
#     parser.add_argument("-y", type=int, help="year", required=True)
#     parser.add_argument("-viz", help="Save visualization", action="store_true")
#     parser.add_argument("-D", type=str, help="path to data",default='/local/DATA')
#     return parser.parse_args()

# args = get_arguments()

# GPU = args.g
# YEAR = args.y
# SET = args.s
# VIZ = args.viz
# DATA_ROOT = args.D

GPU = '0'
YEAR = '17'
SET = 'val'
VIZ = 'store_true'
DATA_ROOT = '..\\DAVIS2017SemiSupervisedTrainVal480'

# Model and version
MODEL = 'STM'
print(MODEL, ': Testing on DAVIS')

os.environ['CUDA_VISIBLE_DEVICES'] = GPU
if torch.cuda.is_available():
    print('using Cuda devices, num:', torch.cuda.device_count())

if VIZ:
    print('--- Produce mask overaid video outputs. Evaluation will run slow.')
    print('--- Require FFMPEG for encoding, Check folder ./viz')


palette = Image.open(DATA_ROOT + '/Annotations/480p/blackswan/00000.png').getpalette()

def Run_video(Fs, Ms, num_frames, num_objects, Mem_every=None, Mem_number=None):
    # initialize storage tensors
    if Mem_every:
        to_memorize = [int(i) for i in np.arange(0, num_frames, step=Mem_every)]
    elif Mem_number:
        to_memorize = [int(round(i)) for i in np.linspace(0, num_frames, num=Mem_number+2)[:-1]]
    else:
        raise NotImplementedError

    Es = torch.zeros_like(Ms)
    Es[:,:,0] = Ms[:,:,0]

    for t in tqdm.tqdm(range(1, num_frames)):
        # memorize
        with torch.no_grad():
            prev_key, prev_value = model(Fs[:,:,t-1], Es[:,:,t-1], torch.tensor([num_objects])) 

        if t-1 == 0: # 
            this_keys, this_values = prev_key, prev_value # only prev memory
        else:
            this_keys = torch.cat([keys, prev_key], dim=3)
            this_values = torch.cat([values, prev_value], dim=3)

        # segment
        with torch.no_grad():
            logit = model(Fs[:,:,t], this_keys, this_values, torch.tensor([num_objects]))
        Es[:,:,t] = F.softmax(logit, dim=1)

        # update
        if t-1 in to_memorize:
            keys, values = this_keys, this_values

    pred = np.argmax(Es[0].cpu().numpy(), axis=0).astype(np.uint8)
    return pred, Es



Testset = DAVIS_MO_Test(DATA_ROOT, resolution='480p', imset='20{}/{}.txt'.format(YEAR,SET), single_object=(YEAR==16))
Testloader = data.DataLoader(Testset, batch_size=1, shuffle=False, num_workers=2, pin_memory=True)

model = nn.DataParallel(STM())
if torch.cuda.is_available():
    model.cuda()
model.eval() # turn-off BN

pth_path = 'STM_weights.pth'
print('Loading weights:', pth_path)
model.load_state_dict(torch.load(pth_path)) # , map_location=torch.device('cpu')

code_name = '{}_DAVIS_{}{}'.format(MODEL,YEAR,SET)
print('Start Testing:', code_name)

if torch.cuda.is_available() == False:
    print("********** CUDA is NOT available just before line of error **********")
else:
    print("********** CUDA is available, and working fine just before line of error ***********")

if __name__ == '__main__':

    for seq, V in enumerate(Testloader):
        Fs, Ms, num_objects, info = V
        seq_name = info['name'][0]
        num_frames = info['num_frames'][0].item()
        print('[{}]: num_frames: {}, num_objects: {}'.format(seq_name, num_frames, num_objects[0][0]))

        pred, Es = Run_video(Fs, Ms, num_frames, num_objects, Mem_every=5, Mem_number=None)

        # Save results for quantitative eval ######################
        test_path = os.path.join('./test', code_name, seq_name)
        if not os.path.exists(test_path):
            os.makedirs(test_path)
        for f in range(num_frames):
            img_E = Image.fromarray(pred[f])
            img_E.putpalette(palette)
            img_E.save(os.path.join(test_path, '{:05d}.png'.format(f)))

        if VIZ:
            from helpers import overlay_davis
            # visualize results #######################
            viz_path = os.path.join('./viz/', code_name, seq_name)
            if not os.path.exists(viz_path):
                os.makedirs(viz_path)

            for f in range(num_frames):
                pF = (Fs[0,:,f].permute(1,2,0).numpy() * 255.).astype(np.uint8)
                pE = pred[f]
                canvas = overlay_davis(pF, pE, palette)
                canvas = Image.fromarray(canvas)
                canvas.save(os.path.join(viz_path, 'f{}.jpg'.format(f)))

            vid_path = os.path.join('./viz/', code_name, '{}.mp4'.format(seq_name))
            frame_path = os.path.join('./viz/', code_name, seq_name, 'f%d.jpg')
            os.system('ffmpeg -framerate 10 -i {} {} -vcodec libx264 -crf 10  -pix_fmt yuv420p  -nostats -loglevel 0 -y'.format(frame_path, vid_path))

However...

Eventually I got an out of memory error

[car-shadow]: num_frames: 40, num_objects: 1
100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 39/39 [00:09<00:00,  3.98it/s]
Traceback (most recent call last):
  File "eval_DAVIS.py", line 129, in <module>
    for seq, V in enumerate(Testloader):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 345, in __next__
    data = self._next_data()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 856, in _next_data
    return self._process_data(data)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\dataloader.py", line 881, in _process_data
    data.reraise()
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\_utils.py", line 395, in reraise
    raise self.exc_type(msg)
RuntimeError: Caught RuntimeError in pin memory thread for device 0.
Original Traceback (most recent call last):
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\_utils\pin_memory.py", line 31, in _pin_memory_loop
    data = pin_memory(data)
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\_utils\pin_memory.py", line 55, in pin_memory
    return [pin_memory(sample) for sample in data]
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\_utils\pin_memory.py", line 55, in <listcomp>
    return [pin_memory(sample) for sample in data]
  File "C:\Users\OneWorld\anaconda3\envs\STMVOS\lib\site-packages\torch\utils\data\_utils\pin_memory.py", line 47, in pin_memory
    return data.pin_memory()
RuntimeError: cuda runtime error (2) : out of memory at ..\aten\src\THC\THCCachingHostAllocator.cpp:278

so I set the testloader from pin_memory=True to false at around line 108 in eval_DAVIS.py

Testloader = data.DataLoader(Testset, batch_size=1, shuffle=False, num_workers=2, pin_memory=False)

and reran.

Seemed to work fine.