I am attemping to develop an interactive dashboard using Plotly/Dash. The primary functionalities are:
- (1) is to present multiple charts,
- (2) with the same xaxis (timeseries),
- (3) where both underlying data and specific the traces/lines can be interactively adjusted using callbacks.
Functionality (3) is ok and not a problem, so I will not include further in my description. However, (1) & (2) I cannot get to work.
To summarise what I have done so far for (1) & (2):
i. Create traces which refer to which chart the trace should be in (i.e. trace_01 & yaxis='y', trace_02 & yaxis='y2', etc);
ii. Specify yaxis, yaxis2, yaxis3, etc.
iii. Generate the rest of the dash application, as standard (i.e. go.Figure(data=data, layout=layout), dash.Dash(), etc.).
The problem is that I cannot get more than one set of traces on two (or more) charts (i.e. y-axis) with the same xaxis. I cannot get this to work.
CORE PROBLEM CODE:
# Set Traces/Data
t0101 = go.Scatter(x=df_fx.date, y=df_fx['close'],mode='lines',name='close',yaxis='y')
t0201 = go.Scatter(x=df_fx.date, y=df_fx['adx'],mode='lines',name='adx',yaxis='y2')
data = [t0101,t0201]
# Specify Layout
layout= go.Layout(
xaxis= dict(side= 'bottom', anchor= 'y2'),
yaxis= dict(side= 'right'),
yaxis2= dict(side='left'),)
# Call Figure
fig = go.Figure(data=data, layout=layout)
# Create App
app = dash.Dash()
app.layout = html.Div([dcc.Graph(id='chart', figure=fig)])
This code generates the following output: output from code
What I really want to achieve is dashboard output such as: required output
It is important that the solution can be support Functionality (3), for example change the underlying data (the same data is used for all charts/y-axis), or switch btween various traces which are on the chart.
Note, the code for Functionality (3) is excluded this from the above code. The main problem is that I cannot get Functionality (1) & (2) to work.
I have searched extensively, all the documentation and all the stack questions. Most of these refer to multiple yaxis but with overlay='y', I do not want this solution.
I apologise if this has already been answered or is documented elsewhere, but I cannot find why my implementation will not output the required multi-yaxis charts.
Any advice, hacks, errors is really appreciated. This really is my last resort after spending what is way too many hours/nights on this problem.
Appendix 1: Input data sample
Appendix 2: Link to data (csv)
Appendix 3: Link to data (xlsx)
Appendix 4: Full Code:
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import pandas as pd
import datetime as dt
### Input Data_____________________________________________
# Extract
p_fx = 'AUD_NZD'
p_dir = "C:/Users/Gebruiker/Gen_Inds_"
p_file = p_dir + p_fx + ".csv"
df_0 = pd.read_csv(p_file,skiprows=1)
df_1 = pd.DataFrame(df_0.loc[df_0['AUD_NZD']=='AUD_NZD',['AUD_NZD','datetime','open','high','low','close','sma','sma.1','hma','hma.1','kama','kama.1','adx','aroonup', 'aroondown']])
# Prepare
df_1 = df_1.rename(columns={'AUD_NZD': "Pair",
"sma":"sma_s","sma.1":"sma_f",
"hma":"hma_s","hma.1":"hma_f",
"kama":"kama_s","kama.1":"kama_f",
})
df_1['datetime'] = df_1['datetime'].str.rstrip('.999989')
df_2 = df_1.astype({'datetime':'datetime64[ns]'})
df_2['date'] = pd.to_datetime(df_2['datetime'].dt.date, format='%Y-%m-%d')
# Input data
df_fx = pd.DataFrame(df_2[['date','Pair','open','high','low','close','sma_s','sma_f','hma_s','hma_f','kama_s','kama_f','adx','aroonup', 'aroondown']])
print(df_fx.Pair.value_counts())
### Figure_____________________________________________
# Data
t0101 = go.Scatter(x=df_fx.date, y=df_fx['close'],mode='lines',name='close',yaxis='y')
t0201 = go.Scatter(x=df_fx.date, y=df_fx['adx'],mode='lines',name='adx',yaxis='y2')
data = [t0101,t0201]
# Layout
layout= go.Layout(
xaxis= dict(side= 'bottom', anchor= 'y2'),
yaxis= dict(side= 'right'),
yaxis2= dict(side='left'),
)
# Figure
fig = go.Figure(data=data, layout=layout)
### App_____________________________________________
app = dash.Dash()
app.layout = html.Div([
dcc.Graph(id='chart', figure=fig)
])
### End_____________________________________________
if __name__ == '__main__':
app.run_server()
Appendix 4: Partial solution (the stacked charts implemented in callback for Requirement #3)
# add the relevant sub-charts / traces to the fig.
fig = psp.make_subplots(rows=2, cols=1)
fig.append_trace(go.Scatter(x=df_fx.date, y=df_fx.close ,mode='lines',name='close'),
row=1, col=1)
fig.append_trace(go.Scatter(x=df_fx.date, y=df_fx.sma_s ,mode='lines',name='sma_s'),
row=1, col=1)
fig.append_trace(go.Scatter(x=df_fx.date, y=df_fx.adx ,mode='lines',name='adx'),
row=2, col=1)
fig.update_layout(height=600, title_text="Close and ADX")
Appendix 5: Solution output
