I am new to mixed model analysis. Can somebody help me to get things clear?
I have the follwoing repeated measurement design: pre test - intervention - post test.
Varaibles: Go_rt - reaction time. pre_post - categorical variable (pre-test;post-test) expectation - participants expectations.
I have the follwoing R code where I want apply mixed model to evalute wether reaction time is statistically different (pre-test vs post test). Plus I want to whether there is interction with effect with participants expectations.
mod <- lmer(Go_rt ~ pre_post +expectations + pre_post:expectations + (1|participant), data=data, REML=FALSE)
What I doubt about is whether the pre_post variable has to be specified in the random part. So the code will look like this:
mod1 <- lmer(Go_rt ~ pre_post +expectations + pre_post:expectations + (1+ pre_post|participant), data=data, REML=FALSE)
And what will it change if I change it like this?
mod2 <- lmer(Go_rt ~ pre_post +expectations + pre_post:expectations + (1|participant) + (1|pre_post), data=data, REML=FALSE)
Actually the mod2 give me significant results for interaciton effect whereas mod & mod1 does not.