I have some really basic pytorch code here where I'm trying to test running an input tensor through what will eventually become my forward function.
Goal: Treat the a sentence as a single input sequence after embedding each word number.
- Embed a tensor
- Convert that embedding back to a float32 tensor
- Reshape embedding to shape (batch_size, seq_len, input_size)
- Pass through lstm.
I've converted back to a float32 tensor after embedding so idk why I'm getting this error.
hidden_size=10
embedding = nn.Embedding(VOC.n_words, hidden_size)
lstm = nn.LSTM(hidden_size, hidden_size, # Will output 2x hidden size
num_layers=1, dropout=0.5,
bidirectional=True, batch_first=True)
print("Input tensor",idx_sentence)
# Forward test
embedded = embedding(idx_sentence.long())
embedded = torch.tensor(embedded, dtype=torch.float32)
print(f"embedding: {embedded.size()}")
# reshape to (batch_size, seq_len, input_size)
sequence = embedded.view(1,-1,hidden_size)
print(f"sequence shape: {sequence.size()}")
output, hidden = lstm(sequence, hidden_size)
print(f"output shape: {output.size()}")
Input tensor tensor([ 3., 20., 21., 90., 9.])
embedding: torch.Size([5, 10])
sequence shape: torch.Size([1, 5, 10])
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:10: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
# Remove the CWD from sys.path while we load stuff.
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-116-ab3d6ed0e51c> in <module>()
16
17 # Input have shape (seq_len, batch, input_size)
---> 18 output, hidden = lstm(sequence, hidden_size)
19 print(f"output shape: {output.size()}")
2 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py in check_forward_args(self, input, hidden, batch_sizes)
520 expected_hidden_size = self.get_expected_hidden_size(input, batch_sizes)
521
--> 522 self.check_hidden_size(hidden[0], expected_hidden_size,
523 'Expected hidden[0] size {}, got {}')
524 self.check_hidden_size(hidden[1], expected_hidden_size,
TypeError: 'int' object is not subscriptable