I would like some help to use R to analyze an experiment in which three groups of participants were shown two types of stimulus three times each. The dependent variable is a continuous measure. Here is an example of how the dataset looks like.
SubjectID Group Trial StimType Measure
1 1 group1 trial3_stimA A 0.55908866
2 2 group1 trial3_stimA A 0.98884446
3 3 group2 trial3_stimA A 0.00000000
4 4 group2 trial3_stimA A 0.27067991
5 5 group3 trial3_stimA A 0.37169285
6 6 group3 trial3_stimA A 0.42113984
7 1 group1 trial3_stimB B 0.00000000
8 2 group1 trial3_stimB B 0.49892807
9 3 group2 trial3_stimB B 0.14602589
10 4 group2 trial3_stimB B 0.50946555
11 5 group3 trial3_stimB B 0.25572820
12 6 group3 trial3_stimB B 0.22932966
13 1 group1 trial1_stimA A 0.42207604
14 2 group1 trial1_stimA A 0.85599588
15 3 group2 trial1_stimA A 0.36428381
16 4 group2 trial1_stimA A 0.46679336
17 5 group3 trial1_stimA A 0.69379734
18 6 group3 trial1_stimA A 0.55607716
19 1 group1 trial1_stimB B 0.24261465
20 2 group1 trial1_stimB B 0.35176384
21 3 group2 trial1_stimB B 0.21116215
22 4 group2 trial1_stimB B 0.33112544
23 5 group3 trial1_stimB B 0.00000000
24 6 group3 trial1_stimB B 0.00000000
25 1 group1 trial2_stimA A 0.05506943
26 2 group1 trial2_stimA A 0.22537470
27 3 group2 trial2_stimA A 0.00000000
28 4 group2 trial2_stimA A 0.18511144
29 5 group3 trial2_stimA A 0.15586156
30 6 group3 trial2_stimA A 0.04467100
31 1 group1 trial2_stimB B 0.03890585
32 2 group1 trial2_stimB B 0.29787709
33 3 group2 trial2_stimB B 0.00000000
34 4 group2 trial2_stimB B 0.28971992
35 5 group3 trial2_stimB B 0.12993238
36 6 group3 trial2_stimB B 0.05066011
Here is the structure of my data
'data.frame': 36 obs. of 5 variables:
$ SubjectID: Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6 1 2 3 4 ...
$ Group : Factor w/ 3 levels "group1","group2",..: 1 1 2 2 3 3 1 1 2 2 ...
$ Trial : Factor w/ 6 levels "trial1_stimA",..: 5 5 5 5 5 5 6 6 6 6 ...
$ StimType : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 2 2 2 2 ...
$ Measure : num 0.559 0.989 0 0.271 0.372 ...
I need to run a mixed ANOVA with groups as between subjects factor and trials and stimulus type as within subjects factor. I have tried using three different R packages and different syntaxes but R either returns an error message or the output is missing the interactions group x trial x stim type.
For example, when I use anova_test() from the rstatix package
#Trying mixed ANOVA with rstatix
>
> mixed.anova <- anova_test(
+ data = prepared_data, dv = Measure, wid = SubjectID,
+ between = Group, within = c(Trial,StimType)
+ )
Error in check.imatrix(X.design) :
Terms in the intra-subject model matrix are not orthogonal.
> get_anova_table(all_subjects)
Error in is.data.frame(x) : object 'all_subjects' not found
When I use the the aov from afex package
> #using afex
>
>
> mixed.anova2 <- aov_car(Measure ~ Group*Trial*StimType + Error(1|SubjectID/(Trial*StimType)), prepared_data)
Error: Empty cells in within-subjects design (i.e., bad data structure).
table(data[c("Trial", "StimType")])
# StimType
# Trial A B
# trial1_stimA 6 0
# trial1_stimB 0 6
# trial2_stimA 6 0
# trial2_stimB 0 6
# trial3_stimA 6 0
# trial3_stimB 0 6
>
> aov.bww
Call:
aov(formula = SCR ~ Group * Trial * CSType + Error(SubjectID) +
Group, data = sixPhasesAbs2)
Grand Mean: 397.1325
Stratum 1: SubjectID
Terms:
Group Residuals
Sum of Squares 187283464 6399838881
Deg. of Freedom 2 81
Residual standard error: 8888.777
18 out of 20 effects not estimable
Estimated effects may be unbalanced
Stratum 2: Within
Terms:
Trial Group:Trial Residuals
Sum of Squares 158766098 374583941 12799639740
Deg. of Freedom 5 10 405
Residual standard error: 5621.748
12 out of 27 effects not estimable
Estimated effects may be unbalanced
Finally, I tried using lmer
> #using lmer
> model = lmer(Measure ~Group*Trial*StimType +(1|SubjectID), data = prepared_data)
fixed-effect model matrix is rank deficient so dropping 18 columns / coefficients
>
> summary(model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: Measure ~ Group * Trial * StimType + (1 | SubjectID)
Data: prepared_data
REML criterion at convergence: -16.8
Scaled residuals:
Min 1Q Median 3Q Max
-1.1854 -0.5424 0.0000 0.5424 1.1854
Random effects:
Groups Name Variance Std.Dev.
SubjectID (Intercept) 0.024226 0.15565
Residual 0.006861 0.08283
Number of obs: 36, groups: SubjectID, 6
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.639036 0.124672 4.459241 5.126 0.005095 **
Groupgroup2 -0.223497 0.176313 4.459241 -1.268 0.267088
Groupgroup3 -0.014099 0.176313 4.459241 -0.080 0.939728
Trialtrial1_stimB -0.341847 0.082829 15.000000 -4.127 0.000896 ***
Trialtrial2_stimA -0.498814 0.082829 15.000000 -6.022 2.34e-05 ***
Trialtrial2_stimB -0.470644 0.082829 15.000000 -5.682 4.35e-05 ***
Trialtrial3_stimA 0.134931 0.082829 15.000000 1.629 0.124124
Trialtrial3_stimB -0.389572 0.082829 15.000000 -4.703 0.000283 ***
Groupgroup2:Trialtrial1_stimB 0.197452 0.117138 15.000000 1.686 0.112550
Groupgroup3:Trialtrial1_stimB -0.283091 0.117138 15.000000 -2.417 0.028865 *
Groupgroup2:Trialtrial2_stimA 0.175831 0.117138 15.000000 1.501 0.154095
Groupgroup3:Trialtrial2_stimA -0.025857 0.117138 15.000000 -0.221 0.828271
Groupgroup2:Trialtrial2_stimB 0.199966 0.117138 15.000000 1.707 0.108413
Groupgroup3:Trialtrial2_stimB -0.063997 0.117138 15.000000 -0.546 0.592870
Groupgroup2:Trialtrial3_stimA -0.415129 0.117138 15.000000 -3.544 0.002946 **
Groupgroup3:Trialtrial3_stimA -0.363452 0.117138 15.000000 -3.103 0.007276 **
Groupgroup2:Trialtrial3_stimB 0.301779 0.117138 15.000000 2.576 0.021070 *
Groupgroup3:Trialtrial3_stimB 0.007164 0.117138 15.000000 0.061 0.952043
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation matrix not shown by default, as p = 18 > 12.
Use print(x, correlation=TRUE) or
vcov(x) if you need it
fit warnings:
fixed-effect model matrix is rank deficient so dropping 18 columns / coefficients
>
> anova(model)
Missing cells for: Trialtrial1_stimB:StimTypeA, Trialtrial2_stimB:StimTypeA, Trialtrial3_stimB:StimTypeA, Trialtrial1_stimA:StimTypeB, Trialtrial2_stimA:StimTypeB, Trialtrial3_stimA:StimTypeB, Groupgroup1:Trialtrial1_stimB:StimTypeA, Groupgroup2:Trialtrial1_stimB:StimTypeA, Groupgroup3:Trialtrial1_stimB:StimTypeA, Groupgroup1:Trialtrial2_stimB:StimTypeA, Groupgroup2:Trialtrial2_stimB:StimTypeA, Groupgroup3:Trialtrial2_stimB:StimTypeA, Groupgroup1:Trialtrial3_stimB:StimTypeA, Groupgroup2:Trialtrial3_stimB:StimTypeA, Groupgroup3:Trialtrial3_stimB:StimTypeA, Groupgroup1:Trialtrial1_stimA:StimTypeB, Groupgroup2:Trialtrial1_stimA:StimTypeB, Groupgroup3:Trialtrial1_stimA:StimTypeB, Groupgroup1:Trialtrial2_stimA:StimTypeB, Groupgroup2:Trialtrial2_stimA:StimTypeB, Groupgroup3:Trialtrial2_stimA:StimTypeB, Groupgroup1:Trialtrial3_stimA:StimTypeB, Groupgroup2:Trialtrial3_stimA:StimTypeB, Groupgroup3:Trialtrial3_stimA:StimTypeB.
Interpret type III hypotheses with care.
Type III Analysis of Variance Table with Satterthwaite's method
Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Group 0.00723 0.003614 2 3 0.5267 0.6367151
Trial 0.96171 0.192343 5 15 28.0356 4.172e-07 ***
Group:Trial 0.44102 0.044102 10 15 6.4283 0.0007411 ***
StimType
Group:StimType
Trial:StimType
Group:Trial:StimType
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I have searched for similar questions but I have not found any answers that would help me with this problem. I suspect (given the error messages) that I might have to change the structure of the dataset, but I do not know how to do this as I am a beginner in R. How can I run a mixed ANOVA in this dataset?