1
votes

I have a data frame with two columns and many rows.

The first column is a character vector where each element P is a string concatenating a number (K) of strings with a comma. K is unknown in advance and can vary across rows, such that K = 5 for the first row and K = 3 for the second. The values that are concatenated themselves may or may not be the same across rows, although they do not repeat within a row. We can call these "variable names."

The second column - we can call this "variable values" - is a character vector where each element is also a string concatenating K strings with commas. Importantly, the number of strings concatenated is identical to that of the variable names. Put another way, the variable names column contains a string containing the names of variables and the variable values column contains the values that correspond to the variable names for that row.

Here's a minimal example of my data. Note that the number of substrings in e.g. var_names[i] equals the same number in values[i] but need not equal the same as var_names[j]:

# Example data
data <-
  data.frame(
    var_names = c(
      paste("a", "b", "c", "e", "j", sep = ","),
      paste("d", "a", "f", sep = ","),
      paste("f", "k", "b", "a", sep = ",")
    ),
    values = c(
      paste("212", "12", "sfd", "3", "1", sep = ","),
      paste("fds", "23", "g", sep = ","),
      paste("df", "sdf", "w2", "w", sep = ",")
    ),
    stringsAsFactors = FALSE
  )

Given this data, I am trying to create a data frame where each of the unique values in var_names is a column name and the values for each column are based on the corresponding index in values for each row in the data. Specifically, I am looking to produce:

data.frame(a = c("212","23","w"), 
           b = c("12",NA,"w2"),
           c = c("sfd",NA,NA),
           d = c(NA,"fds",NA),
           e = c("3", NA, NA),
           f = c(NA, "g", "df"),
           j = c("1"," NA, NA),
           k = c(NA,NA,"sdf"))

I was able to produce what I wanted using the below. However, I was wondering whether there might be some function/package that would let me skip some of these steps and accomplish this more quickly. Currently, I create a loop that generates entire data frame for each row and then combine them into a single data frame. My initial thought was to take the var_val object in my code and use tidyr::pivot_wider() to generate each row's data frame, but that did not work due to a spec error.

# Split variable names and values into a list
# where each element is a row's values/names
vars_name_l <- strsplit(data$var_names, split = ",")
values_l <- strsplit(data$values, split = ",")

# Initialize a list to store each row's 
# data frame 
combined <- list()

# Loop through each row's data and generate a
# list of data frames 
for (i in 1:length(nrow(data))) {

# Get a row's variable names and values into
# a data frame. 
var_val <- data.frame(var_names = vars_name_l[[i]], 
                      values = values_l[[i]],
                      stringsAsFactors = FALSE)

# Create an empty data frame then add variable
# names and the values for the variables, store in
# our list
df <- as.data.frame(matrix(numeric(), nrow = 0, ncol = length(var_val$var_names)))
colnames(df) <- var_val$var_names
df[1, ] <- var_val$values
combined[[i]] <- df
}

# Collapse list to a single data frame, rearrange
result <- bind_rows(combined)
result[ ,order(colnames(result))]
2

2 Answers

1
votes

We can do this with bind_rows easily

library(dplyr)
bind_rows(do.call(Map, c(f = setNames, lapply(unname(data)[2:1], strsplit, ","))))
# A tibble: 3 x 8
#  a     b     c     e     j     d     f     k    
#* <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#1 212   12    sfd   3     1     <NA>  <NA>  <NA> 
#2 23    <NA>  <NA>  <NA>  <NA>  fds   g     <NA> 
#3 w     w2    <NA>  <NA>  <NA>  <NA>  df    sdf  

Or it can be

bind_rows(do.call(Map, c(f = function(x, y)
    setNames(as.list(x), y), lapply(unname(data)[2:1], strsplit, ","))))

Or another option is unnest_wider from tidyr

library(tidyr)
library(purrr)
data %>%
     mutate_all(strsplit, ",") %>%
     transmute(new = map2(values, var_names, ~ set_names(as.list(.x), .y))) %>%
     unnest_wider(c(new))
# A tibble: 3 x 8
#  a     b     c     e     j     d     f     k    
#  <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#1 212   12    sfd   3     1     <NA>  <NA>  <NA> 
#2 23    <NA>  <NA>  <NA>  <NA>  fds   g     <NA> 
#3 w     w2    <NA>  <NA>  <NA>  <NA>  df    sdf  

Or using rbindlist from data.table

library(data.table)
rbindlist(do.call(Map, c(f = function(x, y)
     setNames(as.list(x), y), lapply(unname(data)[2:1], strsplit, ","))),
     fill = TRUE)
#     a    b    c    e    j    d    f    k
#1: 212   12  sfd    3    1 <NA> <NA> <NA>
#2:  23 <NA> <NA> <NA> <NA>  fds    g <NA>
#3:   w   w2 <NA> <NA> <NA> <NA>   df  sdf
0
votes

We can first get data in separate rows from column var_names and values and then get data in wide format.

library(dplyr)
library(tidyr)

data %>%
  mutate(row = row_number()) %>%
  separate_rows(var_names, values) %>%
  pivot_wider(names_from = var_names, values_from = values) %>%
  select(-row)

#   a     b     c     e     j     d     f     k    
#  <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#1 212   12    sfd   3     1     NA    NA    NA   
#2 23    NA    NA    NA    NA    fds   g     NA   
#3 w     w2    NA    NA    NA    NA    df    sdf