Below is a 6x2
matrix.
1.178214 0.1723376
1.121873 0.1982651
1.120752 0.2470480
1.121873 0.3284342
1.165325 0.5079993
1.128625 1.0000000
I am trying to generate two separate lower triangular matrices using the above 6x2
matrix.
The expected first lower triangular matrix is below
w1 w2 w3 w4 w5 w6
0.1723376 0 0 0 0 0
0.1982651 0.1723376 0 0 0 0
0.2470480 0.1982651 0.1723376 0 0 0
0.3284342 0.2470480 0.1982651 0.1723376 0 0
0.5079993 0.3284342 0.2470480 0.1982651 0.1723376 0
1.0000000 0.5079993 0.3284342 0.2470480 0.1982651 0.1723376
The logic is that the values in
row1 column w1,(R1:W1 0.1723376)
row2 column w2 (R2:W2 0.1723376)
row3 column w3 (R3:W3 0.1723376)
row4 column w4 (R4:W4 0.1723376)
row5 column w5 (R5:W5 0.1723376)
row6 column w6 (R6:W6 0.1723376)
row2 column w1,(R2:W1 0.1982651)
row3 column w2 (R3:W2 0.1982651)
row4 column w3 (R4:W3 0.1982651)
row5 column w4 (R5:W4 0.1982651)
row6 column w5 (R6:W5 0.1982651)
are similar, rest follow this pattern.
The second lower triangular matrix is bit more complicated and involves the 1st column from the initial 6x2
matrix. The expected matrix is below
w1 w2 w3 w4 w5 w6
0.1723376 0 0 0 0 0
0.1640966 0.1982651 0 0 0
0.1639326 0.1980670 0.2470480 0 0 0
0.1640966 0.1982651 0.2472952 0.2472952 0 0
0.1704523 0.2059443 0.2568733 0.2568733 0.3411550 0
0.1650842 0.1994584 0.2487835 0.2487835 0.3304109 0.4920007
The logic is as follows.
The column1 w1 elements are calculated as follows
1.178214 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
1.121873 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
1.120752 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
1.121873 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
1.165325 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
1.128625 / (1.178214 + 1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
The column2 w2 elements are estimated as follows
0.1982651 = 1.121873 / (1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
0.198067 = 1.120752 / (1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
0.1982651 = 1.121873 / (1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
0.2059443 = 1.165325 / (1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
0.1994584 = 1.128625 / (1.121873 + 1.120752 + 1.121873 + 1.165325 + 1.128625)
The column3 w3 elements are estimated as follows
0.247048 = 1.120752 / (1.120752 + 1.121873 + 1.165325 + 1.128625)
0.2472952 = 1.121873 / (1.120752 + 1.121873 + 1.165325 + 1.128625)
0.2568733 = 1.165325 / (1.120752 + 1.121873 + 1.165325 + 1.128625)
0.2487835 = 1.128625 / (1.120752 + 1.121873 + 1.165325 + 1.128625)
Need help generating these matrices in r.