Consider the following directed graph. For a given n, the vertices of the graph correspond to the integers 1 through n. There is a directed edge from vertex i to vertex j if i divides j. Draw the graph for n = 12. Perform a DFS of the above graph with n = 12. Record the discovery and finish times of each vertex according to your DFS and classify all the edges of the graph into tree, back, forward, and cross edges. You can pick any start vertex (vertices) and any order of visiting the vertices.
I do not see how it is possible to traverse this graph because of the included stipulations. It is not possible to get a back edge because a dividing a smaller number by a larger number does not produce an integer and will never be valid.
Say we go by this logic and create a directed graph with the given instructions. Vertex 1 is able to travel to vertex 2, because 2 / 1 is a whole number. However, it is impossible to get to vertex 3 as vertex 2 can only travel to vertex 4, 6, 8, or 10. Since you cannot divide by a bigger number it will never be possible to visit a lower vertex once taking one of these paths and therefore not possible to reach vertex 3.