I'm building a multiclass text classification model using HuggingFace's transformers library, using Keras and BERT.
To convert my inputs to the required bert format, I'm using the encode_plus
method found in the BertTokenizer class found here
The data is a paragraph of sentences per feature, and has a single label (of 45 labels in total)
The code to convert the inputs is :
def create_input_array(df, tokenizer):
sentences = df.text.values
labels = df.label.values
input_ids = []
attention_masks = []
token_type_ids = []
# For every sentence...
for sent in sentences:
# `encode_plus` will:
# (1) Tokenize the sentence.
# (2) Prepend the `[CLS]` token to the start.
# (3) Append the `[SEP]` token to the end.
# (4) Map tokens to their IDs.
# (5) Pad or truncate the sentence to `max_length`
# (6) Create attention masks for [PAD] tokens.
encoded_dict = tokenizer.encode_plus(
sent, # Sentence to encode.
add_special_tokens=True, # Add '[CLS]' and '[SEP]'
max_length=128, # Pad & truncate all sentences.
pad_to_max_length=True,
return_attention_mask=True, # Construct attn. masks.
return_tensors='tf', # Return tf tensors.
)
# Add the encoded sentence to the list.
input_ids.append(encoded_dict['input_ids'])
# And its attention mask (simply differentiates padding from non-padding).
attention_masks.append(encoded_dict['attention_mask'])
token_type_ids.append(encoded_dict['token_type_ids'])
return [np.asarray(input_ids, dtype=np.int32),
np.asarray(attention_masks, dtype=np.int32),
np.asarray(token_type_ids, dtype=np.int32)]
The model in it's most basic form which still reproduces the error:
model = TFBertForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels = labellen,
output_attentions = False,
output_hidden_states = False
)
Compile and fit:
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
model.fit(x_train, y[:100], epochs=1, batch_size=3)
The error when I run this :
ValueError: Cannot reshape a tensor with 768 elements to shape [1,1,128,1] (128 elements) for '{{node tf_bert_for_sequence_classification_3/bert/embeddings/LayerNorm/Reshape}} = Reshape[T=DT_FLOAT, Tshape=DT_INT32](tf_bert_for_sequence_classification_3/bert/embeddings/LayerNorm/Reshape/ReadVariableOp, tf_bert_for_sequence_classification_3/bert/embeddings/LayerNorm/Reshape/shape)' with input shapes: [768], [4] and with input tensors computed as partial shapes: input1 = [1,1,128,1].
I understand that BERT converts every token into a 768 value array, but that is the only knowledge I have of that particular number, so I'm stuck on how to proceed.
If anyone has experience with the HuggingFace library, I would also appreciate your thoughts on whether TFBertForSequenceClassification is appropriate for paragraph classification.
Many thanks.