It's easiest to think of fixed-point numbers as scaled integers — rather than shifted integers. For a given fixed-point type, there is a fixed scale which is a power of two (or ten). To convert from the real value to the integer representation, multiply by that scale. To convert back again, simply divide. Then the issue of how negative values are represented becomes a detail of the integer type with which you are representing your number.
Please anyone tell me which source is correct...
Both are problematic.
Your first source is incorrect. The given example is not...
the same as 2's complement numbers.
In two’s complement, the MSB's (most significant bit's) weight is negated but the other bits still contribute positive values. Thus a two’s complement number with all bits set to 1 does not produce the minimum value.
Your second source could be a little misleading where it says...
shifting the bit pattern of a number to the right by 1 bit always divide the number by 2.
This statement brushes over the matter of underflow that occurs when the LSB (least significant bit) is set to 1, and the resultant rounding. Right-shifting commonly results in rounding towards negative infinity while division results in rounding towards zero (truncation). Both produce the same behavior for positive numbers: 3/2 == 1
and 3>>1 == 1
. For negative numbers, they are contrary: -3/2 == -1
but -3>>1 == -2
.
...is there a standard representation for signed fixed point numbers?
I don't think so. There are language-specific standards, e.g. ISO/IEC TR 18037 (draft). But the convention of scaling integers to approximate real numbers of predetermined range and resolution is well established. How the underlying integers are represented is another matter.
Additionally, if the 2's complement representation was correct then how to represent negative numbers with zero integer part. For example -0.125?
That depends on the format of your integer and your choice of radix. Assuming a 16-bit two’s complement number representing binary fixed-point values, the scaling factor is 2^15
which is 32,768
. Multiply the value to store as an integer: -0.125*32768. == -4096
and divide to retrieve it: -4096/32768. == -0.125
.