When I want to evaluate my model with cross validation, should I perform cross validation on original (data thats not split on train and test) or on train / test data?
I know that training data is used for fitting the model, and testing for evaluating. If I use cross validation, should I still split the data into train and test, or not?
features = df.iloc[:,4:-1]
results = df.iloc[:,-1]
x_train, x_test, y_train, y_test = train_test_split(features, results, test_size=0.3, random_state=0)
clf = LogisticRegression()
model = clf.fit(x_train, y_train)
accuracy_test = cross_val_score(clf, x_test, y_test, cv = 5)
Or should I do like this:
features = df.iloc[:,4:-1]
results = df.iloc[:,-1]
clf = LogisticRegression()
model = clf.fit(features, results)
accuracy_test = cross_val_score(clf, features, results, cv = 5)), 2)
Or maybe something different?
test
part shouldn't be used for anything except the final evaluation. BTW, you have a mistake in your code (in the first block). You're fittingclf
using the training data and then you're applying cross validation using the test data. – Minions