When talking about time complexity we usually use n as input, which is not a precise measure of the actual input size. I am having trouble showing that, when using specific size for input (s) an algorithm remains in the same complexity class.
For instance, take a simple Sequential Search algorithm. In its worst case it takes W(n) time. If we apply specific input size (in base 2), the order should be W(lg L), where L is the largest integer.
How do I show that Sequential Search, or any algorithm, remains the same complexity class, in this case linear time? I understand that there is some sort of substitution that needs to take place, but I am shaky on how to come to the conclusion.
EDIT
I think I may have found what I was looking for, but I'm not entirely sure.
If you define worst case time complexity as W(s), the maximum number of steps done by an algorithm for an input size of s, then by definition of input size, s = lg n, where n is the input. Then, n = 2^s, leading to the conclusion that the time complexity is W(2^s), an exponential complexity. Therefore, the algorithm's performance with binary encoding is exponential, not linear as it is in terms of magnitude.
O(n) == O(log2(n)^2). That's just basic math. - Jim MischelO(log2(n)^2)is wrong. I meantO(2^log2(n)). - Jim Mischel