I am trying to read a SDP610 sensiron differential pressure sensor via a Texas Instruments msp430. I am having the issue of the sensor not acknowledging the command and thus, not communicating the pressure value itself. Note I have confirmed that the sensor works by hooking it up to an arduino via an opensource library and, I can see the data via this. Note my IDE is code composer. My chips is MSP430FR2311 (a launch pad breakout board).
My hardware setup is 4 wires. Vcc(3.3V), Ground(0V), SDK and SCL. The SDK and SCL lines are pulled to VCC with a 4.7Kohm resistor as per specification.
I have the following code for my MSP430 see below:
However, I do not see the response of the sensor via a logic analyser. Here is my capture. You will have to click the link. Note the top line is clock and bottom is the data. MSP430 output. The logic flow for reading the sensor from the datasheet and from the arduino code is as follows:
- Write address of the device to the I2C line(8 bit h81)
- Wait for slave acknowledge
- Write command for reading (8 bit hF1)
- Wait for slave acknowledge
- Slave holds the master
- Slave outputs 3 bytes (2 data one msb and 1 lsb then a check sum)
- acknowledge
This is the datasheet for the sensor
Any tips to why the sensor is not responding.
CODE
void Read_Diff_pressure(void)
{
int rx_byte;
UCB0CTL1 |= UCTXSTT+ UCTR; // Generating START + I2C transmit (write)
UCB0I2CSA = SDP610Address; // SDP610 7 bit address 0x40
UCB0TXBUF = SDP610Read; // sending the read command 0x78
while(!(UCB0IFG & UCTXIFG)); //wait until reg address got sent
while( UCB0CTL1 & UCTXSTT); //wait till START condition is cleared
UCB0CTL1 |= UCTXSTT; //generate RE-START
UCB0I2CSA = SDP610Address; // SDP610 7 bit address 0x40
UCB0CTL1 &=~ UCTR; //receive mode
while( UCB0CTL1 & UCTXSTT); //wait till START condition is cleared
rx_byte = UCB0RXBUF; //read byte
//while(!(UCB0IFG & UCRXIFG)); //wait while the Byte is being read
UCB0CTL1 |= UCTXNACK; //generate a NACK
UCB0CTL1 |= UCTXSTP; //generate stop condition
while(UCB0CTL1 & UCTXSTP); //wait till stop condition got sent```
Pressure_result = rx_byte;
}
void InitI2C_diff(void)
{
PAOUT |= I2C_SCL_PIN|I2C_SDA_PIN;//P1.2(SDA) - P1.3(SCL) as per silk screen defined in a header
PADIR |= I2C_SCL_PIN|I2C_SDA_PIN;
PASEL0 |= (I2C_SCL_PIN|I2C_SDA_PIN); // configure I2C pins (device specific)
UCB0CTLW0 |= UCSWRST; // put eUSCI_B in reset state
UCB0CTLW0 |= UCMODE_3 | UCSYNC | UCMST; // I2C master mode, SMCL
UCB0CTL1 = UCSSEL_2 + UCSWRST; //use SMCLK + still reset
UCB0BR0 = 10; // default SMCLK 1M/10 = 100KHz
UCB0BR1 = 0; //
UCB0I2CSA = SDP610Address; //The address of the device
UCB0CTLW0 &= ~UCSWRST; // eUSCI_B in operational state
//UCB0BRW = 64; // baudrate = SMCLK / 64
}
int main(void)
{
InitI2C_diff();//Init the i2c
while (1) { // Mainloop
Read_Diff_pressure();
delay(1000);//1 Second delay before re looping
}
}
int
for bitwise operations is to ask for problems. – LundinLOCKLPM5
. – CL.