Generally using circular DMA only works if you trigger on the half full/half empty, otherwise you don't have enough time to copy information out of the buffer.
I would recommend against copying the data out the buffer during the interrupt. Rather use the data directly from the buffer without an additional copy step.
If you do the copy in the interrupt, you are blocking other lower priority interrupts during the copy. On a STM32 a simple naive byte copy of 48 bytes may take additional 48*6 ~ 300 clock cycles.
If you track the buffers read and write positions independently, you just need to update a single pointer and post a delayed a notification call to the consumer of the buffer.
If you want a longer period then don't use circular DMA, rather use normal DMA in 48 byte blocks and implement circular byte buffer as a data structure.
I did this for a USART at 460k baud that receives asynchronously variable length packets. If you ensure that the producer only updates the write pointer and the consumer only updates the read pointer you can avoid data races in most of it. Note that the read and write of an aligned <=32 bit variable on cortex m3/m4 is atomic.
The included code is a simplified version of the circular buffer with DMA support that I used. It is limited to buffer sizes that are 2^n and uses Templates and C++11 functionality so it may not be suitable depending on your development/platform constraints.
To use the buffer call getDmaReadBlock() or getDMAwriteBlock() and get the DMA memory address and block length. Once the DMA completes use skipRead() / skipWrite() to increment the read or write pointers by the actual amount that was transferred.
/**
* Creates a circular buffer. There is a read pointer and a write pointer
* The buffer is full when the write pointer is = read pointer -1
*/
template<uint16_t SIZE=256>
class CircularByteBuffer {
public:
struct MemBlock {
uint8_t *blockStart;
uint16_t blockLength;
};
private:
uint8_t *_data;
uint16_t _readIndex;
uint16_t _writeIndex;
static constexpr uint16_t _mask = SIZE - 1;
// is the circular buffer a power of 2
static_assert((SIZE & (SIZE - 1)) == 0);
public:
CircularByteBuffer &operator=(const CircularByteBuffer &) = default;
CircularByteBuffer(uint8_t (&data)[SIZE]);
CircularByteBuffer(const CircularByteBuffer &) = default;
~CircularByteBuffer() = default;
private:
static uint16_t wrapIndex(int32_t index);
public:
/*
* The number of byte available to be read. Writing bytes to the buffer can only increase this amount.
*/
uint16_t readBytesAvail() const;
/**
* Return the number of bytes that can still be written. Reading bytes can only increase this amount.
*/
uint16_t writeBytesAvail() const;
/**
* Read a byte from the buffer and increment the read pointer
*/
uint8_t readByte();
/**
* Write a byte to the buffer and increment the write pointer. Throws away the byte if there is no space left.
* @param byte
*/
void writeByte(uint8_t byte);
/**
* Provide read only access to the buffer without incrementing the pointer. Whilst memory accesses outside the
* allocated memeory can be performed. Garbage data can still be read if that byte does not contain valid data
* @param pos the offset from teh current read pointer
* @return the byte at the given offset in the buffer.
*/
uint8_t operator[](uint32_t pos) const;
/**
* INcrement the read pointer by a given amount
*/
void skipRead(uint16_t amount);
/**
* Increment the read pointer by a given amount
*/
void skipWrite(uint16_t amount);
/**
* Get the start and lenght of the memeory block used for DMA writes into the queue.
* @return
*/
MemBlock getDmaWriteBlock();
/**
* Get the start and lenght of the memeory block used for DMA reads from the queue.
* @return
*/
MemBlock getDmaReadBlock();
};
// CircularByteBuffer
// ------------------
template<uint16_t SIZE>
inline CircularByteBuffer<SIZE>::CircularByteBuffer(uint8_t (&data)[SIZE]):
_data(data),
_readIndex(0),
_writeIndex(0) {
}
template<uint16_t SIZE>
inline uint16_t CircularByteBuffer<SIZE>::wrapIndex(int32_t index){
return static_cast<uint16_t>(index & _mask);
}
template<uint16_t SIZE>
inline uint16_t CircularByteBuffer<SIZE>::readBytesAvail() const {
return wrapIndex(_writeIndex - _readIndex);
}
template<uint16_t SIZE>
inline uint16_t CircularByteBuffer<SIZE>::writeBytesAvail() const {
return wrapIndex(_readIndex - _writeIndex - 1);
}
template<uint16_t SIZE>
inline uint8_t CircularByteBuffer<SIZE>::readByte() {
if (readBytesAvail()) {
uint8_t result = _data[_readIndex];
_readIndex = wrapIndex(_readIndex+1);
return result;
} else {
return 0;
}
}
template<uint16_t SIZE>
inline void CircularByteBuffer<SIZE>::writeByte(uint8_t byte) {
if (writeBytesAvail()) {
_data[_writeIndex] = byte;
_writeIndex = wrapIndex(_writeIndex+1);
}
}
template<uint16_t SIZE>
inline uint8_t CircularByteBuffer<SIZE>::operator[](uint32_t pos) const {
return _data[wrapIndex(_readIndex + pos)];
}
template<uint16_t SIZE>
inline void CircularByteBuffer<SIZE>::skipRead(uint16_t amount) {
_readIndex = wrapIndex(_readIndex+ amount);
}
template<uint16_t SIZE>
inline void CircularByteBuffer<SIZE>::skipWrite(uint16_t amount) {
_writeIndex = wrapIndex(_writeIndex+ amount);
}
template <uint16_t SIZE>
inline typename CircularByteBuffer<SIZE>::MemBlock CircularByteBuffer<SIZE>::getDmaWriteBlock(){
uint16_t len = static_cast<uint16_t>(SIZE - _writeIndex);
// full is (write == (read -1)) so on wrap around we need to ensure that we stop 1 off from the read pointer.
if( _readIndex == 0){
len = static_cast<uint16_t>(len - 1);
}
if( _readIndex > _writeIndex){
len = static_cast<uint16_t>(_readIndex - _writeIndex - 1);
}
return {&_data[_writeIndex], len};
}
template <uint16_t SIZE>
inline typename CircularByteBuffer<SIZE>::MemBlock CircularByteBuffer<SIZE>::getDmaReadBlock(){
if( _readIndex > _writeIndex){
return {&_data[_readIndex], static_cast<uint16_t>(SIZE- _readIndex)};
} else {
return {&_data[_readIndex], static_cast<uint16_t>(_writeIndex - _readIndex)};
}
}
`