I am doing Exercise 2.6 from the Concrete Semantics book:
Starting from the type 'a tree defined in the text, define a function contents :: 'a tree ⇒ 'a list that collects all values in a tree in a list, in any order, without removing duplicates. Then define a function sum_tree :: nat tree ⇒ nat that sums up all values in a tree of natural numbers and prove sum_tree t = sum_list (contents t) (where sum_list is predefined).
I have started to prove the theorem not using auto but guiding Isabelle to use the necessary theorems:
theory Minimal
imports Main
begin
datatype 'a tree = Tip | Node "'a tree" 'a "'a tree"
fun contents :: "'a tree ⇒ 'a list" where
"contents Tip = []"
| "contents (Node l a r) = a # (contents l) @ (contents r)"
fun sum_tree :: "nat tree ⇒ nat" where
"sum_tree Tip = 0"
| "sum_tree (Node l a r) = a + (sum_tree l) + (sum_tree r)"
lemma sum_list_contents:
"sum_list (contents t1) + sum_list (contents t2) = sum_list (contents t1 @ contents t2)"
apply auto
done
lemma sum_commutes: "sum_tree(t) = sum_list(contents(t))"
apply (induction t)
apply (simp only: sum_tree.simps contents.simps sum_list.Nil)
apply (simp only: sum_list.Cons contents.simps sum_tree.simps sum_list_contents)
Here it arrives to a proof state
proof (prove)
goal (1 subgoal):
1. ⋀t1 x2 t2.
sum_tree t1 = sum_list (contents t1) ⟹
sum_tree t2 = sum_list (contents t2) ⟹
x2 + sum_list (contents t1) + sum_list (contents t2) = x2 + sum_list (contents t1 @ contents t2)
Where I wonder why simp
did not use the provided sum_list_contents
lemma. I know simple simp
would solve the equation.
What does general simp
contain that simp only
would not use in this case?
+
being left-associative, so you actually have(x2 + sum_list (contents t1)) + sum_list (contents t2)
and now your lemma LHS doesn’t match any more. I’ll wait for the experts to tell you about the “right” way to fix that, though. – Joachim Breitner