not sure what you mean by not getting all the content. Have you tried just using Pandas (it uses beautifulsoup under the hood to parse <table>
tags. Returns the full table for me:
EDIT
In the furture, be more specific in your question. It wasn't until your comments that you explained more. It's all there, you just need to iterate through it all.
import requests
import pandas as pd
from bs4 import BeautifulSoup
url = 'https://www.teamrankings.com/nba/team/oklahoma-city-thunder'
response = requests.get(url)
df = pd.DataFrame()
soup = BeautifulSoup(response.text, 'html.parser')
table = soup.find_all('table')[1]
cols = [ each.text for each in table.find_all('th') ]
rows = table.find_all('tr')
for row in rows:
data = [ each.text for each in row.find_all('td') ]
temp_df = pd.DataFrame([data])
df = df.append(temp_df, sort=True).reset_index(drop=True)
df = df.dropna()
df.columns = cols
Output:
print (df)
Date Opponent Result Location W/L Div Spread Total Money
1 10/23 Utah L 95-100 Away 0-1 0-1 +9.0 Un 221.0 +339
2 10/25 Washington L 85-97 Home 0-2 0-1 -8.5 Un 218.5 -399
3 10/27 Golden State W 120-92 Home 1-2 0-1 -1.0 Un 223.5 -117
4 10/28 Houston L 112-116 Away 1-3 0-1 +10.0 Ov 227.5 +433
5 10/30 Portland L 99-102 Home 1-4 0-2 +1.5 Un 221.5 +104
6 11/02 New Orleans W 115-104 Home 2-4 0-2 -2.0 Un 228.5 -124
7 11/05 Orlando W 102-94 Home 3-4 0-2 -3.0 Un 201.5 -142
8 11/07 San Antonio L 112-121 Away 3-5 0-2 +5.0 Ov 211.5 +172
9 11/09 Golden State W 114-108 Home 4-5 0-2 -12.5 Ov 216.5 -770
10 11/10 Milwaukee L 119-121 Home 4-6 0-2 +8.5 Ov 220.0 +329
11 11/12 Indiana L 85-111 Away 4-7 0-2 +1.0 Un 213.0 -101
12 11/15 Philadelphia W 127-119 Home 5-7 0-2 +3.5 Ov 214.0 +148
13 11/18 LA Clippers L 88-90 Away 5-8 0-2 +7.5 Un 222.0 +297
14 11/19 LA Lakers L 107-112 Away 5-9 0-2 +11.0 Ov 209.5 +469
15 11/22 LA Lakers L 127-130 Home 5-10 0-2 +4.5 Ov 209.5 +186
16 11/25 Golden State W 100-97 Away 6-10 0-2 -7.5 Un 213.5 -297
17 11/27 Portland L 119-136 Away 6-11 0-3 +3.0 Ov 219.0 +137
18 11/29 New Orleans W 109-104 Home 7-11 0-3 -4.5 Un 229.0 -195
19 12/01 New Orleans W 107-104 Away 8-11 0-3 +2.5 Un 226.5 +124
20 12/04 Indiana L 100-107 Home 8-12 0-3 +1.5 Un 208.5 +102
21 12/06 Minnesota W 139-127 Home 9-12 1-3 -3.5 Ov 218.0 -160
22 12/08 Portland W 108-96 Away 10-12 2-3 +3.5 Un 223.0 +154
23 12/09 Utah W 104-90 Away 11-12 3-3 +8.5 Un 206.5 +311
24 12/11 Sacramento L 93-94 Away 11-13 3-3 +1.5 Un 207.5 +117
25 12/14 Denver L 102-110 Away 11-14 3-4 +5.5 Ov 204.0 +211
26 12/16 Chicago W 109-106 Home 12-14 3-4 -5.0 Ov 208.5 -211
27 12/18 Memphis W 126-122 Home 13-14 3-4 -6.5 Ov 219.5 -254
28 12/20 Phoenix W 126-108 Home 14-14 3-4 -3.0 Ov 224.5 -147
29 12/22 LA Clippers W 118-112 Home 15-14 3-4 -1.0 Ov 223.5 -111
30 12/26 Memphis L 97-110 Home 15-15 3-4 -5.5 Un 224.0 -242
.. ... ... ... ... ... ... ... ... ...
53 02/09 Boston 3:30 pm Home -- -- --
54 02/11 San Antonio 8:00 pm Home -- -- --
55 02/13 New Orleans 8:00 pm Away -- -- --
56 02/21 Denver 8:00 pm Home -- -- --
57 02/23 San Antonio 7:00 pm Home -- -- --
58 02/25 Chicago 8:00 pm Away -- -- --
59 02/27 Sacramento 8:00 pm Home -- -- --
60 02/28 Milwaukee 8:00 pm Away -- -- --
61 03/03 LA Clippers 8:00 pm Home -- -- --
62 03/04 Detroit 7:00 pm Away -- -- --
63 03/06 New York 7:30 pm Away -- -- --
64 03/08 Boston 6:00 pm Away -- -- --
65 03/11 Utah 8:00 pm Home -- -- --
66 03/13 Minnesota 8:00 pm Home -- -- --
67 03/15 Washington 6:00 pm Away -- -- --
68 03/17 Memphis 8:00 pm Away -- -- --
69 03/18 Atlanta 7:30 pm Away -- -- --
70 03/20 Denver 8:00 pm Home -- -- --
71 03/23 Miami 7:30 pm Away -- -- --
72 03/26 Charlotte 8:00 pm Home -- -- --
73 03/28 Golden State 8:30 pm Away -- -- --
74 03/30 Denver 9:00 pm Away -- -- --
75 04/01 Phoenix 8:00 pm Home -- -- --
76 04/04 LA Clippers 3:30 pm Away -- -- --
77 04/05 LA Lakers 9:30 pm Away -- -- --
78 04/07 Brooklyn 8:00 pm Home -- -- --
79 04/10 New York 8:00 pm Home -- -- --
80 04/11 Memphis 8:00 pm Away -- -- --
81 04/13 Utah 8:00 pm Home -- -- --
82 04/15 Dallas 7:30 pm Away -- -- --
[82 rows x 9 columns]