Model summary:
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 195) 38220
_________________________________________________________________
dense_2 (Dense) (None, 400) 78400
_________________________________________________________________
dropout_1 (Dropout) (None, 400) 0
_________________________________________________________________
dense_3 (Dense) (None, 200) 80200
_________________________________________________________________
dropout_2 (Dropout) (None, 200) 0
_________________________________________________________________
dense_4 (Dense) (None, 3) 603
=================================================================
Here dense_4 (Dense)
has the output shape (None, 3)
.
The last layer is the output layer. Because of 'None', I am facing error during Flask app development. This is the error in Flask
raise ValueError("Tensor %s is not an element of this graph." % obj) ValueError: Tensor Tensor("dense_8/Softmax:0", shape=(?, 3), dtype=float32) is not an element of this graph.
I tried to add this piece of code
global graph
graph = tf.get_default_graph()
and inside predict api the following code
with graph.as_default():
y_hat = model.predict(x_test, batch_size=1, verbose=1)
Later I got to see another error
tensorflow.python.framework.errors_impl.FailedPreconditionError: Error while reading resource variable dense_6/kernel from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/dense_6/kernel/class tensorflow::Var does not exist.
[[{{node dense_6/MatMul/ReadVariableOp}}]]
Any idea why?
Full error trace:
here classifier model loaded
127.0.0.1 - - [08/Jan/2020 13:13:19] "[1m[35mPOST /predict HTTP/1.1[0m" 500 -´
Traceback (most recent call last):
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 2463, in __call__
return self.wsgi_app(environ, start_response)
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 2449, in wsgi_app
response = self.handle_exception(e)
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 1866, in handle_exception
reraise(exc_type, exc_value, tb)
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\_compat.py", line 39, in reraise
raise value
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 2446, in wsgi_app
response = self.full_dispatch_request()
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 1951, in full_dispatch_request
rv = self.handle_user_exception(e)
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 1820, in handle_user_exception
reraise(exc_type, exc_value, tb)
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\_compat.py", line 39, in reraise
raise value
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 1949, in full_dispatch_request
rv = self.dispatch_request()
File "C:\Users\user1\AppData\Local\Continuum\anaconda3\lib\site-
packages\flask\app.py", line 1935, in dispatch_request
return self.view_functions[rule.endpoint](**req.view_args)
File "C:\Users\user1\Desktop\flask_apps\app.py", line 147, in predict
y = model.predict(X_test,batch_size=1, verbose=1)
File "C:\Users\user1\AppData\Roaming\Python\Python37\site-
packages\tensorflow\python\keras\engine\training.py", line 1078, in
predict
callbacks=callbacks)
File "C:\Users\user1\AppData\Roaming\Python\Python37\site-
packages\tensorflow\python\keras\engine\training_arrays.py", line 363, in
model_iteration
batch_outs = f(ins_batch)
File "C:\Users\user1\AppData\Roaming\Python\Python37\site-
packages\tensorflow\python\keras\backend.py", line 3292, in __call__
run_metadata=self.run_metadata)
File "C:\Users\user1\AppData\Roaming\Python\Python37\site-
packages\tensorflow\python\client\session.py", line 1458, in __call__
run_metadata_ptr)
tensorflow.python.framework.errors_impl.FailedPreconditionError: Error
while reading resource variable dense_6/kernel from Container: localhost.
This could mean that the variable was uninitialized. Not found: Resource
localhost/dense_6/kernel/class tensorflow::Var does not exist.