I am trying to develop a OCR system. I am trying to use MSER in order to extract character from an image and then passing the characters into a CNN to recognize those characters. Here is my code for character extraction:
import cv2
import numpy as np
# create MSER object
mser = cv2.MSER_create()
# read the image
img = cv2.imread('textArea01.png')
# convert to gray scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# store copy of the image
vis = img.copy()
# detect regions in the image
regions,_ = mser.detectRegions(gray)
# find convex hulls of the regions and draw them onto the original image
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(vis, hulls, 1, (0, 255, 0))
# create mask for the detected region
mask = np.zeros((img.shape[0], img.shape[1], 1), dtype=np.uint8)
mask = cv2.dilate(mask, np.ones((150, 150), np.uint8))
for contour in hulls:
cv2.drawContours(mask, [contour], -1, (255, 255, 255), -1)
#this is used to find only text regions, remaining are ignored
text_only = cv2.bitwise_and(img, img, mask=mask)
cv2.imshow('img', vis)
cv2.waitKey(0)
cv2.imshow('mask', mask)
cv2.waitKey(0)
cv2.imshow('text', text_only)
cv2.waitKey(0)
This is working fine for most images, but for some images like this:
The outer border is also detected as a region and the contour is drawn in the mask such that all area inside the border is detected as text region. So, the contours inside have no effect. How do I prevent this so that only the text is detected? Hulls detected: and the mask as a result: