So I am currently reading SICP and I am stuck at exercise 1.22, since I do not understand why my program isn't working the way I intend it to work. Here is the Code
#lang sicp
; the given function to time the search for a prime
(define (timed-prime-test n)
(newline)
(display n)
(start-prime-test n (runtime)))
(define (start-prime-test n start-time)
(if (prime? n)
(report-prime (- (runtime) start-time))))
(define (report-prime elapsed-time)
(display " *** ")
(display elapsed-time))
; finds the smallest natural number that can divide n without any remainder
(define (smallest-divisor n)
(define (square x)
(* x x))
(define (divides? a b)
(= (remainder a b) 0))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? n test-divisor) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(find-divisor n 2))
; returns true if the given number n is prime
(define (prime? n)
(= n (smallest-divisor n)))
; start searching at start and found keeps track of the amount of
; primes found, if it equals 3 return found
(define (search-for-primes start found)
(if (= found 3)
found ; after finding 3 primes above start return
((timed-prime-test start) ; if not continue search with start + 1
(search-for-primes (+ start 1) (if (not (prime? start))
found
(+ found 1))))))
(search-for-primes 1000 0)
The problem is that when I run this program it works fine until it finds a prime number. The interpreter that I use is racket and the program terminates with:
application: not a procedure;
expected a procedure that can be applied to arguments
given: #<void>
arguments...:
3
1019 *** 0
If I understand the interpreter correctly than it should evaluate this expression according to the applicative-order evaluation principle right? So why is it passing the if
expression as a procedure to my search-for-primes
procedure? What am I missing here?